Docs: fix zh-cn sitemap (#1631)

Signed-off-by: Carson Yang <yangchuansheng33@gmail.com>
This commit is contained in:
Carson Yang
2024-05-29 15:46:43 +08:00
committed by GitHub
parent f1e16b209a
commit 5c8f2f95f7
107 changed files with 4 additions and 4 deletions

View File

@@ -0,0 +1,10 @@
---
weight: 350
title: "模块介绍"
description: "介绍 FastGPT 的常用模块"
icon: "apps"
draft: false
images: []
---
<!-- 350 ~ 400 -->

View File

@@ -0,0 +1,34 @@
---
title: "AI 对话"
description: "FastGPT AI 对话模块介绍"
icon: "chat"
draft: false
toc: true
weight: 351
---
## 特点
- 可重复添加
- 触发执行
- 核心模块
![](/imgs/aichat.png)
## 参数说明
## AI模型
可以通过 [config.json](/docs/development/configuration/) 配置可选的对话模型,通过 [one-api](/docs/development/one-api/) 来实现多模型接入。
点击AI模型后可以配置模型的相关参数。
![](/imgs/aichat02.png)
![](/imgs/aichat2.png)
{{% alert icon="🍅" context="success" %}}
具体配置参数介绍可以参考: [AI参数配置说明](/docs/course/ai_settings)
{{% /alert %}}

View File

@@ -0,0 +1,57 @@
---
title: "内容提取"
description: "FastGPT 内容提取模块介绍"
icon: "content_paste_go"
draft: false
toc: true
weight: 352
---
## 特点
- 可重复添加
- 需要手动配置
- 触发执行
- function_call 模块
- 核心模块
![](/imgs/extract1.png)
## 功能
从文本中提取结构化数据,通常是配合 HTTP 模块实现扩展。也可以做一些直接提取操作,例如:翻译。
## 参数说明
### 提取要求描述
顾名思义,给模型设置一个目标,需要提取哪些内容。
**示例 1**
> 你是实验室预约助手,从对话中提取出姓名,预约时间,实验室号。当前时间 {{cTime}}
**示例 2**
> 你是谷歌搜索助手,从对话中提取出搜索关键词
**示例 3**
> 将我的问题直接翻译成英文,不要回答问题
### 历史记录
通常需要一些历史记录,才能更完整的提取用户问题。例如上图中需要提供姓名、时间和实验室名,用户可能一开始只给了时间和实验室名,没有提供自己的姓名。再经过一轮缺失提示后,用户输入了姓名,此时需要结合上一次的记录才能完整的提取出 3 个内容。
### 目标字段
目标字段与提取的结果相对应,从上图可以看到,每增加一个字段,输出会增加一个对应的出口。
+ **key**: 字段的唯一标识,不可重复!
+ **字段描述**:描述该字段是关于什么的,例如:姓名、时间、搜索词等等。
+ **必须**:是否强制模型提取该字段,可能提取出来是空字符串。
## 输出介绍
- **完整提取结果**: 一个 JSON 字符串,包含所有字段的提取结果。
- **目标字段提取结果**:类型均为字符串。

View File

@@ -0,0 +1,39 @@
---
title: "问题优化(已合并到知识库搜索)"
description: "问题优化模块介绍和使用"
icon: "input"
draft: false
toc: true
weight: 364
---
## 特点
- 可重复添加
- 有外部输入
- 触发执行
![](/imgs/coreferenceResolution1.jpg)
## 背景
在 RAG 中,我们需要根据输入的问题去数据库里执行 embedding 搜索,查找相关的内容,从而查找到相似的内容(简称知识库搜索)。
在搜索的过程中,尤其是连续对话的搜索,我们通常会发现后续的问题难以搜索到合适的内容,其中一个原因是知识库搜索只会使用“当前”的问题去执行。看下面的例子:
![](/imgs/coreferenceResolution2.webp)
用户在提问“第二点是什么”的时候只会去知识库里查找“第二点是什么”压根查不到内容。实际上需要查询的是“QA结构是什么”。因此我们需要引入一个【问题优化】模块来对用户当前的问题进行补全从而使得知识库搜索能够搜索到合适的内容。使用补全后效果如下
![](/imgs/coreferenceResolution3.webp)
## 功能
调用 AI 去对用户当前的问题进行补全。目前主要是补全“指代”词,使得检索词更加的完善可靠,从而增强上下文连续对话的知识库搜索能力。
遇到最大的难题在于:模型对于【补全】的概念可能不清晰,且对于长上下文往往无法准确的知道应该如何补全。
## 示例
- [接入谷歌搜索](/docs/workflow/examples/google_search/)

View File

@@ -0,0 +1,35 @@
---
title: "自定义反馈"
description: "自定义反馈模块介绍"
icon: "feedback"
draft: false
toc: true
weight: 354
---
该模块为临时模块,后续会针对该模块进行更全面的设计。
## 特点
- 可重复添加
- 无外部输入
- 自动执行
| | |
| --------------------- | --------------------- |
| ![](/imgs/customfeedback1.jpg) | ![](/imgs/customfeedback2.jpg) |
| ![](/imgs/customfeedback3.jpg) | ![](/imgs/customfeedback4.jpg) |
## 介绍
自定义反馈模块,可以为你的对话增加一个反馈标记,从而方便在后台更好的分析对话的数据。
在调试模式下,不会记录反馈内容,而是直接提示: `自动反馈测试: 反馈内容`
在对话模式(对话、分享窗口、带 chatId 的 API 调用会将反馈内容记录到对话日志中。会延迟60s记录
## 作用
自定义反馈模块的功能类似于程序开发的`埋点`,便于你观测的对话中的数据。

View File

@@ -0,0 +1,34 @@
---
title: '知识库搜索'
description: 'FastGPT AI 知识库搜索模块介绍'
icon: 'chat'
draft: false
toc: true
weight: 357
---
知识库搜索具体参数说明,以及内部逻辑请移步:[FastGPT知识库搜索方案](/docs/course/data_search/)
## 特点
- 可重复添加(复杂编排时防止线太乱,可以更美观)
- 有外部输入
- 有静态配置
- 触发执行
- 核心模块
![](/imgs/flow-dataset1.png)
## 参数说明
### 输入 - 关联的知识库
可以选择一个或多个**相同向量模型**的知识库,用于向量搜索。
### 输入 - 搜索参数
[点击查看参数介绍](/docs/course/data_search/#搜索参数)
### 输出 - 引用内容
以数组格式输出引用,长度可以为 0。意味着即使没有搜索到内容这个输出链路也会走通。

View File

@@ -0,0 +1,253 @@
---
title: "HTTP 模块"
description: "FastGPT HTTP 模块介绍"
icon: "http"
draft: false
toc: true
weight: 355
---
## 特点
- 可重复添加
- 手动配置
- 触发执行
- 核中核模块
![](/imgs/http1.jpg)
## 介绍
HTTP 模块会向对应的地址发送一个 `HTTP` 请求,实际操作与 Postman 和 ApiFox 这类直流工具使用差不多。
- Params 为路径请求参数GET请求中用的居多。
- Body 为请求体POST/PUT请求中用的居多。
- Headers 为请求头,用于传递一些特殊的信息。
- 自定义变量中可以接收前方节点的输出作为变量
- 3 种数据中均可以通过 `{{}}` 来引用变量。
- url 也可以通过 `{{}}` 来引用变量。
- 变量来自于`全局变量``系统变量``前方节点输出`
## 参数结构
### 系统变量说明
你可以将鼠标放置在`请求参数`旁边的问号中,里面会提示你可用的变量。
- appId: 应用的ID
- chatId: 当前对话的ID测试模式下不存在。
- responseChatItemId: 当前对话中响应的消息ID测试模式下不存在。
- variables: 当前对话的全局变量。
- cTime: 当前时间。
- histories: 历史记录默认最多取10条无法修改长度
### Params, Headers
不多描述使用方法和Postman, ApiFox 基本一致。
可通过 {{key}} 来引入变量。例如:
| key | value |
| --- | --- |
| appId | {{appId}} |
| Authorization | Bearer {{token}} |
### Body
只有特定请求类型下会生效。
可以写一个`自定义的 Json`,并通过 {{key}} 来引入变量。例如:
{{< tabs tabTotal="3" >}}
{{< tab tabName="假设有一组变量" >}}
{{< markdownify >}}
```json
{
"string": "字符串",
"number": 123,
"boolean": true,
"array": [1, 2, 3],
"obj": {
"name": "FastGPT",
"url": "https://fastgpt.in"
}
}
```
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="Http 模块中的Body声明" >}}
{{< markdownify >}}
注意,在 Body 中,你如果引用`字符串`,则需要加上`""`,例如:`"{{string}}"`
```json
{
"string": "{{string}}",
"token": "Bearer {{string}}",
"number": {{number}},
"boolean": {{boolean}},
"array": [{{number}}, "{{string}}"],
"array2": {{array}},
"object": {{obj}}
}
```
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="最终得到的解析" >}}
{{< markdownify >}}
```json
{
"string": "字符串",
"token": "Bearer 字符串",
"number": 123,
"boolean": true,
"array": [123, "字符串"],
"array2": [1, 2, 3],
"object": {
"name": "FastGPT",
"url": "https://fastgpt.in"
}
}
```
{{< /markdownify >}}
{{< /tab >}}
{{< /tabs >}}
### 如何获取返回值
从图中可以看出FastGPT可以添加多个返回值这个返回值并不代表接口的返回值而是代表`如何解析接口返回值`,可以通过 key 来`提取`接口响应的值。例如:
{{< tabs tabTotal="2" >}}
{{< tab tabName="接口响应格式" >}}
{{< markdownify >}}
```json
{
"message": "测试",
"data":{
"user": {
"name": "xxx",
"age": 12
},
"list": [
{
"name": "xxx",
"age": 50
},
[{ "test": 22 }]
],
"psw": "xxx"
}
}
```
{{< /markdownify >}}
{{< /tab >}}
{{< tab tabName="FastGPT 转化后的格式" >}}
{{< markdownify >}}
```json
{
"message": "测试",
"data.user": { "name": "xxx", "age": 12 },
"data.user.name": "xxx",
"data.user.age": 12,
"data.list": [ { "name": "xxx", "age": 50 }, [{ "test": 22 }] ],
"data.list[0]": { "name": "xxx", "age": 50 },
"data.list[0].name": "xxx",
"data.list[0].age": 50,
"data.list[1]": [ { "test": 22 } ],
"data.list[1][0]": { "test": 22 },
"data.list[1][0].test": 22,
"data.psw": "xxx"
}
```
{{< /markdownify >}}
{{< /tab >}}
{{< /tabs >}}
你可以配置对应的`key`来从`FastGPT 转化后的格式`获取需要的值,该规则遵守 JS 的对象取值规则。例如:
1. 获取`message`的内容,那么你可以配置`message``key``message`,这样就可以获取到`message`的内容。
2. 获取`user的name`,则`key`可以为:`data.user.name`
3. 获取list中第二个元素`key`可以为:`data.list[1]`,然后输出类型选择字符串,则获自动获取到`[ { "test": 22 } ]``json`字符串。
### 自动格式化输出
FastGPT v4.6.8 后,加入了出参格式化功能,主要以`json`格式化成`字符串`为主。如果你的输出类型选择了`字符串`,则会将`HTTP`对应`key`的值,转成`json`字符串进行输出。因此,未来你可以直接从`HTTP`接口输出内容至`文本加工`中,然后拼接适当的提示词,最终输入给`AI对话`
{{% alert context="warning" %}}
HTTP模块非常强大你可以对接一些公开的API来提高编排的功能。
如果你不想额外部署服务,可以使用 [Laf](https://laf.dev/) 来快速开发上线接口,即写即发,无需部署。
{{% /alert %}}
## laf 对接 HTTP 示例
下面是在 Laf 编写的 POST 请求示例:
```ts
import cloud from '@lafjs/cloud'
const db = cloud.database()
type RequestType = {
appId: string;
appointment: string;
action: 'post' | 'delete' | 'put' | 'get'
}
export default async function (ctx: FunctionContext) {
try {
// 从 body 中获取参数
const { appId, appointment, action } = ctx.body as RequestType
const parseBody = JSON.parse(appointment)
if (action === 'get') {
return await getRecord(parseBody)
}
if (action === 'post') {
return await createRecord(parseBody)
}
if (action === 'put') {
return await putRecord(parseBody)
}
if (action === 'delete') {
return await removeRecord(parseBody)
}
return {
response: "异常"
}
} catch (err) {
return {
response: "异常"
}
}
}
```
## 作用
通过 HTTP 模块你可以无限扩展,比如:
- 操作数据库
- 调用外部数据源
- 执行联网搜索
- 发送邮箱
- ....
## 相关示例
- [谷歌搜索](/docs/workflow/examples/google_search/)
- [发送飞书webhook](/docs/workflow/examples/feishu_webhook/)
- [实验室预约(操作数据库)](/docs/workflow/examples/lab_appointment/)

View File

@@ -0,0 +1,16 @@
---
title: "对话入口"
description: "FastGPT 对话入口模块介绍"
icon: "input"
draft: false
toc: true
weight: 356
---
## 特点
- 流程入口
- 无输入
- 自动执行
![](/imgs/chatinput.png)

View File

@@ -0,0 +1,98 @@
---
title: "Laf 函数调用"
description: "FastGPT Laf 函数调用模块介绍"
icon: "code"
draft: false
toc: true
weight: 355
---
![](/imgs/laf1.webp)
## 介绍
`Laf 函数调用`模块可以调用 Laf 账号下的云函数,其工作原理与 HTTP 模块相同,有以下特殊特征:
- 只能使用 POST 请求
- 请求自带系统参数 systemParams无需通过变量传递。
## 绑定 Laf 账号
要调用 Laf 云函数,首先需要绑定 Laf 账号和应用,并且在应用中创建云函数。
Laf 提供了 PAT(访问凭证) 来实现 Laf 平台外的快捷登录,可以访问 [Laf 文档](https://doc.Laf.run/zh/cli/#%E7%99%BB%E5%BD%95)查看详细如何获取 PAT。
在获取到 PAT 后,我们可以进入 FastGPT 的`账号页`或是在高级编排中的 `Laf模块` 对 Laf 账号进行绑定。Laf 账号是团队共享的,仅团队管理员可配置。
填入 PAT 验证后,选择需要绑定的应用(应用需要是 Running 状态),即可调用该应用下的云函数。
![](/imgs/laf2.webp)
## 编写云函数
Laf 云函数拥有根据 interface 自动生成 OpenAPI 的能力,可以参照下面的代码编写云函数,以便自动生成 OpenAPI 文档。
`Laf模块`可以根据 OpenAPI 文档,自动识别出入参,无需手动添加数据类型。如果不会写 TS可忽略手动在 FastGPT 中添加参数即可。
```ts
import cloud from '@lafjs/cloud'
interface IRequestBody { // 自定义入参FastGPT 传入的均为POST请求。
data1: string // 必填参数
data2?: string // 可选参数
}
interface RequestProps extends IRequestBody { // 完整入参,这个无需改动。
systemParams: { // 这是FastGPT默认会传递过来的参数
appId: string,
variables: string,
histories: string,
cTime: string,
chatId: string,
responseChatItemId: string
}
}
interface IResponse { // 响应内容
message: string // 必返回的参数
msg?: string; // 可选的返回参数
}
export default async function (ctx: FunctionContext): Promise<IResponse> {
const {
data1,
data2,
systemParams
}: RequestProps = ctx.body;
console.log({
data1,
data2,
systemParams
});
return {
message: 'ok',
msg: 'msg'
};
}
```
当然,你也可以在 Laf 平台上选择 fastgpt_template快速生成该函数模板。
具体操作可以是,进入 Laf 的函数页面,新建函数(注意 fastgpt 只会调用 post 请求的函数然后复制上面的代码或者点击更多模板搜索“fastgpt”使用下面的模板
![](/imgs/laf3.webp)
## FastGPT 中使用
在选择函数后,可以通过点击“同步参数”,自动同步云函数的参数到 FastGPT 中。当然也可以手动添加,手动修改后的参数不会被“同步参数”修改。
![](/imgs/laf4.png)
## 使用注意事项
### 调用报错
先在 laf 中调试函数,看是否正常调用。可以通过 console.log打印入参将入参放在 Laf 测试页面的 Body 中进行测试。

View File

@@ -0,0 +1,78 @@
---
title: "问题分类"
description: "FastGPT 问题分类模块介绍"
icon: "quiz"
draft: false
toc: true
weight: 358
---
## 特点
- 可重复添加
- 有外部输入
- 需要手动配置
- 触发执行
- function_call 模块
![](/imgs/cq1.png)
## 功能
可以将用户的问题进行分类,分类后执行不同操作。在一些较模糊的场景中,分类效果不是很明显。
## 参数说明
### 系统提示词
被放置在对话最前面,可用于补充说明分类内容的定义。例如问题会被分为:
1. 打招呼
2. Laf 常见问题
3. 其他问题
由于 Laf 不是一个明确的东西,需要给它一个定义,此时提示词里可以填入 Laf 的定义:
```
Laf 是云开发平台,可以快速的开发应用
Laf 是一个开源的 BaaS 开发平台Backend as a Service)
Laf 是一个开箱即用的 serverless 开发平台
Laf 是一个集「函数计算」、「数据库」、「对象存储」等于一身的一站式开发平台
Laf 可以是开源版的腾讯云开发、开源版的 Google Firebase、开源版的 UniCloud
```
### 聊天记录
适当增加一些聊天记录,可以联系上下文进行分类。
### 用户问题
用户输入的内容。
### 分类内容
依然以这 3 个分类为例,可以看到最终组成的 Function。其中返回值由系统随机生成不需要关心。
1. 打招呼
2. Laf 常见问题
3. 其他问题
```js
const agentFunction = {
name: agentFunName,
description: '判断用户问题的类型属于哪方面,返回对应的枚举字段',
parameters: {
type: 'object',
properties: {
type: {
type: 'string',
description: `打招呼,返回: abcLaf 常见问题返回vvv其他问题返回aaa`
enum: ["abc","vvv","aaa"]
}
},
required: ['type']
}
};
```
上面的 Function 必然会返回 `type = abcvvvaaa` 其中一个值,从而实现分类判断。

View File

@@ -0,0 +1,26 @@
---
title: "指定回复"
description: "FastGPT 指定回复模块介绍"
icon: "reply"
draft: false
toc: true
weight: 359
---
## 特点
- 可重复添加(防止复杂编排时线太乱,重复添加可以更美观)
- 可手动输入
- 可外部输入
- 会输出结果给客户端
指定回复模块通常用户特殊状态回复,回复内容有两种:
1. 一种是手动输入固定内容。
2. 一种是通过变量引用。
{{< figure
src="/imgs/specialreply.png"
alt=""
caption="图 1"
>}}

View File

@@ -0,0 +1,32 @@
---
title: "文本加工"
description: "FastGPT 文本加工模块介绍"
icon: "input"
draft: false
toc: true
weight: 363
---
## 特点
- 可重复添加
- 有外部输入
- 触发执行
- 手动配置
![](/imgs/string.png)
## 功能
对输入文本进行固定加工处理,入参仅支持字符串和数字格式,入参以变量形式使用在文本编辑区域。
根据上方示例图的处理方式,对任何输入都会在前面拼接“用户的问题是:”。
## 作用
给任意模块输入自定格式文本,或处理 AI 模块系统提示词。
## 示例
- [接入谷歌搜索](/docs/workflow/examples/google_search/)

View File

@@ -0,0 +1,31 @@
---
title: "判断器"
description: "FastGPT 判断器模块介绍"
icon: "input"
draft: false
toc: true
weight: 362
---
## 特点
- 可重复添加
- 有外部输入
- 触发执行
![](/imgs/judgement1.png)
## 功能
对任意变量进行`IF`判断,若满足条件则执行`IF`分支,不满足条件执行`ELSE`分支。
上述例子中若「知识库引用」变量的长度等于0则执行`IF`分支,否则执行`ELSE`分支。
支持增加更多的判断条件和分支,同编程语言中的`IF`语句逻辑相同。
## 作用
适用场景有:让大模型做判断后输出固定内容,根据大模型回复内容判断是否触发后续模块。

View File

@@ -0,0 +1,59 @@
---
title: "工具调用"
description: "FastGPT 工具调用模块介绍"
icon: "build"
draft: false
toc: true
weight: 356
---
![](/imgs/flow-tool1.png)
## 什么是工具
工具可以是一个系统模块例如AI对话、知识库搜索、HTTP模块等。也可以是一个插件。
工具调用可以让 LLM 更动态的决策流程而不都是固定的流程。当然缺点就是费tokens
## 工具的组成
1. 工具介绍。通常是模块的介绍或插件的介绍这个介绍会告诉LLM这个工具的作用是什么。
2. 工具参数。对于系统模块来说,工具参数已经是固定的,无需额外配置。对于插件来说,工具参数是一个可配置项。
## 工具是如何运行的
要了解工具如何运行的,首先需要知道它的运行条件。
1. 需要工具的介绍或者叫描述。这个介绍会告诉LLM这个工具的作用是什么LLM会根据上下文语义决定是否需要调用这个工具。
2. 工具的参数。有些工具调用时可能需要一些特殊的参数。参数中有2个关键的值`参数介绍``是否必须`
结合工具的介绍、参数介绍和参数是否必须LLM会决定是否调用这个工具。有以下几种情况
1. 无参数的工具:直接根据工具介绍,决定是否需要执行。例如:获取当前时间。
2. 有参数的工具:
1. 无必须的参数尽管上下文中没有适合的参数也可以调用该工具。但有时候LLM会自己伪造一个参数。
2. 有必须的参数如果没有适合的参数LLM可能不会调用该工具。可以通过提示词引导用户提供参数。
### 工具调用逻辑
在支持`函数调用`的模型中,可以一次性调用多个工具,调用逻辑如下:
![](/imgs/flow-tool2.png)
## 怎么用
| 有工具调用模块 | 无工具调用模块 |
| --- | --- |
| ![](/imgs/flow-tool3.png) | ![](/imgs/flow-tool4.png) |
高级编排中,托动工具调用的连接点,可用的工具头部会出现一个菱形,可以将它与工具调用模块底部的菱形相连接。
被连接的工具,会自动分离工具输入与普通的输入,并且可以编辑`介绍`,可以通过调整介绍,使得该工具调用时机更加精确。
关于工具调用,如何调试仍然是一个玄学,所以建议,不要一次性增加太多工具,选择少量工具调优后再进一步尝试。
## 相关示例
- [谷歌搜索](/docs/workflow/examples/google_search/)
- [发送飞书webhook](/docs/workflow/examples/feishu_webhook/)