mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 13:03:50 +00:00
V4.8.17 feature (#3493)
* split tokens into input and output (#3477) * split tokens into input and output * query extension & tool call & question guide * fix * perf: input and output tokens * perf: tool call if else * perf: remove code * fix: extract usage count * fix: qa usage count --------- Co-authored-by: heheer <heheer@sealos.io>
This commit is contained in:
@@ -18,7 +18,6 @@ import {
|
||||
Thead,
|
||||
Tr,
|
||||
Table,
|
||||
useDisclosure,
|
||||
FlexProps
|
||||
} from '@chakra-ui/react';
|
||||
import { useSystemStore } from '@/web/common/system/useSystemStore';
|
||||
@@ -175,10 +174,28 @@ const AIChatSettingsModal = ({
|
||||
<Tbody>
|
||||
<Tr color={'myGray.900'}>
|
||||
<Td pt={0} pb={2}>
|
||||
{t('common:support.wallet.Ai point every thousand tokens', {
|
||||
points: selectedModel?.charsPointsPrice || 0
|
||||
})}
|
||||
{typeof selectedModel?.inputPrice === 'number' ? (
|
||||
<>
|
||||
<Box>
|
||||
{t('common:support.wallet.Ai point every thousand tokens_input', {
|
||||
points: selectedModel?.inputPrice || 0
|
||||
})}
|
||||
</Box>
|
||||
<Box>
|
||||
{t('common:support.wallet.Ai point every thousand tokens_output', {
|
||||
points: selectedModel?.outputPrice || 0
|
||||
})}
|
||||
</Box>
|
||||
</>
|
||||
) : (
|
||||
<>
|
||||
{t('common:support.wallet.Ai point every thousand tokens', {
|
||||
points: selectedModel?.charsPointsPrice || 0
|
||||
})}
|
||||
</>
|
||||
)}
|
||||
</Td>
|
||||
|
||||
<Td pt={0} pb={2}>
|
||||
{Math.round((selectedModel?.maxContext || 4096) / 1000)}K
|
||||
</Td>
|
||||
|
@@ -60,14 +60,32 @@ const ModelTable = () => {
|
||||
const formatLLMModelList = llmModelList.map((item) => ({
|
||||
...item,
|
||||
typeLabel: t('common:model.type.chat'),
|
||||
priceLabel: (
|
||||
<Flex color={'myGray.700'}>
|
||||
<Box fontWeight={'bold'} color={'myGray.900'} mr={0.5}>
|
||||
{item.charsPointsPrice}
|
||||
priceLabel:
|
||||
typeof item.inputPrice === 'number' ? (
|
||||
<Box>
|
||||
<Flex>
|
||||
{`${t('common:common.Input')}:`}
|
||||
<Box fontWeight={'bold'} color={'myGray.900'} mr={0.5} ml={2}>
|
||||
{item.inputPrice || 0}
|
||||
</Box>
|
||||
{`${t('common:support.wallet.subscription.point')} / 1K Tokens`}
|
||||
</Flex>
|
||||
<Flex>
|
||||
{`${t('common:common.Output')}:`}
|
||||
<Box fontWeight={'bold'} color={'myGray.900'} mr={0.5} ml={2}>
|
||||
{item.outputPrice || 0}
|
||||
</Box>
|
||||
{`${t('common:support.wallet.subscription.point')} / 1K Tokens`}
|
||||
</Flex>
|
||||
</Box>
|
||||
{`${t('common:support.wallet.subscription.point')} / 1K Tokens`}
|
||||
</Flex>
|
||||
),
|
||||
) : (
|
||||
<Flex color={'myGray.700'}>
|
||||
<Box fontWeight={'bold'} color={'myGray.900'} mr={0.5}>
|
||||
{item.charsPointsPrice}
|
||||
</Box>
|
||||
{`${t('common:support.wallet.subscription.point')} / 1K Tokens`}
|
||||
</Flex>
|
||||
),
|
||||
tagColor: 'blue'
|
||||
}));
|
||||
const formatVectorModelList = vectorModelList.map((item) => ({
|
||||
@@ -149,13 +167,13 @@ const ModelTable = () => {
|
||||
|
||||
return filterList;
|
||||
}, [
|
||||
provider,
|
||||
modelType,
|
||||
llmModelList,
|
||||
vectorModelList,
|
||||
audioSpeechModelList,
|
||||
whisperModel,
|
||||
t,
|
||||
modelType,
|
||||
provider,
|
||||
search
|
||||
]);
|
||||
|
||||
|
@@ -155,10 +155,26 @@ export const WholeResponseContent = ({
|
||||
label={t('common:core.chat.response.module tokens')}
|
||||
value={`${activeModule?.tokens}`}
|
||||
/>
|
||||
<Row
|
||||
label={t('common:core.chat.response.module input tokens')}
|
||||
value={`${activeModule?.inputTokens}`}
|
||||
/>
|
||||
<Row
|
||||
label={t('common:core.chat.response.module output tokens')}
|
||||
value={`${activeModule?.outputTokens}`}
|
||||
/>
|
||||
<Row
|
||||
label={t('common:core.chat.response.Tool call tokens')}
|
||||
value={`${activeModule?.toolCallTokens}`}
|
||||
/>
|
||||
<Row
|
||||
label={t('common:core.chat.response.Tool call input tokens')}
|
||||
value={`${activeModule?.toolCallInputTokens}`}
|
||||
/>
|
||||
<Row
|
||||
label={t('common:core.chat.response.Tool call output tokens')}
|
||||
value={`${activeModule?.toolCallOutputTokens}`}
|
||||
/>
|
||||
|
||||
<Row label={t('common:core.chat.response.module query')} value={activeModule?.query} />
|
||||
<Row
|
||||
|
@@ -26,37 +26,48 @@ const UsageDetail = ({ usage, onClose }: { usage: UsageItemType; onClose: () =>
|
||||
[usage.list]
|
||||
);
|
||||
|
||||
const { hasModel, hasToken, hasCharsLen, hasDuration } = useMemo(() => {
|
||||
let hasModel = false;
|
||||
let hasToken = false;
|
||||
let hasCharsLen = false;
|
||||
let hasDuration = false;
|
||||
let hasDataLen = false;
|
||||
const { hasModel, hasToken, hasInputToken, hasOutputToken, hasCharsLen, hasDuration } =
|
||||
useMemo(() => {
|
||||
let hasModel = false;
|
||||
let hasToken = false;
|
||||
let hasInputToken = false;
|
||||
let hasOutputToken = false;
|
||||
let hasCharsLen = false;
|
||||
let hasDuration = false;
|
||||
let hasDataLen = false;
|
||||
|
||||
usage.list.forEach((item) => {
|
||||
if (item.model !== undefined) {
|
||||
hasModel = true;
|
||||
}
|
||||
usage.list.forEach((item) => {
|
||||
if (item.model !== undefined) {
|
||||
hasModel = true;
|
||||
}
|
||||
|
||||
if (typeof item.tokens === 'number') {
|
||||
hasToken = true;
|
||||
}
|
||||
if (typeof item.charsLength === 'number') {
|
||||
hasCharsLen = true;
|
||||
}
|
||||
if (typeof item.duration === 'number') {
|
||||
hasDuration = true;
|
||||
}
|
||||
});
|
||||
if (typeof item.tokens === 'number') {
|
||||
hasToken = true;
|
||||
}
|
||||
if (typeof item.inputTokens === 'number') {
|
||||
hasInputToken = true;
|
||||
}
|
||||
if (typeof item.outputTokens === 'number') {
|
||||
hasOutputToken = true;
|
||||
}
|
||||
if (typeof item.charsLength === 'number') {
|
||||
hasCharsLen = true;
|
||||
}
|
||||
if (typeof item.duration === 'number') {
|
||||
hasDuration = true;
|
||||
}
|
||||
});
|
||||
|
||||
return {
|
||||
hasModel,
|
||||
hasToken,
|
||||
hasCharsLen,
|
||||
hasDuration,
|
||||
hasDataLen
|
||||
};
|
||||
}, [usage.list]);
|
||||
return {
|
||||
hasModel,
|
||||
hasToken,
|
||||
hasInputToken,
|
||||
hasOutputToken,
|
||||
hasCharsLen,
|
||||
hasDuration,
|
||||
hasDataLen
|
||||
};
|
||||
}, [usage.list]);
|
||||
|
||||
return (
|
||||
<MyModal
|
||||
@@ -98,6 +109,8 @@ const UsageDetail = ({ usage, onClose }: { usage: UsageItemType; onClose: () =>
|
||||
<Th>{t('account_usage:module_name')}</Th>
|
||||
{hasModel && <Th>{t('account_usage:ai_model')}</Th>}
|
||||
{hasToken && <Th>{t('account_usage:token_length')}</Th>}
|
||||
{hasInputToken && <Th>{t('account_usage:input_token_length')}</Th>}
|
||||
{hasOutputToken && <Th>{t('account_usage:output_token_length')}</Th>}
|
||||
{hasCharsLen && <Th>{t('account_usage:text_length')}</Th>}
|
||||
{hasDuration && <Th>{t('account_usage:duration_seconds')}</Th>}
|
||||
<Th>{t('account_usage:total_points_consumed')}</Th>
|
||||
@@ -109,6 +122,8 @@ const UsageDetail = ({ usage, onClose }: { usage: UsageItemType; onClose: () =>
|
||||
<Td>{t(item.moduleName as any)}</Td>
|
||||
{hasModel && <Td>{item.model ?? '-'}</Td>}
|
||||
{hasToken && <Td>{item.tokens ?? '-'}</Td>}
|
||||
{hasInputToken && <Td>{item.inputTokens ?? '-'}</Td>}
|
||||
{hasOutputToken && <Td>{item.outputTokens ?? '-'}</Td>}
|
||||
{hasCharsLen && <Td>{item.charsLength ?? '-'}</Td>}
|
||||
{hasDuration && <Td>{item.duration ?? '-'}</Td>}
|
||||
<Td>{formatNumber(item.amount)}</Td>
|
||||
|
@@ -37,7 +37,7 @@ async function handler(
|
||||
|
||||
const qgModel = global.llmModels[0];
|
||||
|
||||
const { result, tokens } = await createQuestionGuide({
|
||||
const { result, inputTokens, outputTokens } = await createQuestionGuide({
|
||||
messages,
|
||||
model: qgModel.model
|
||||
});
|
||||
@@ -47,7 +47,8 @@ async function handler(
|
||||
});
|
||||
|
||||
pushQuestionGuideUsage({
|
||||
tokens,
|
||||
inputTokens,
|
||||
outputTokens,
|
||||
teamId,
|
||||
tmbId
|
||||
});
|
||||
|
@@ -52,14 +52,15 @@ async function handler(req: ApiRequestProps<CreateQuestionGuideParams>, res: Nex
|
||||
|
||||
const qgModel = questionGuide?.model || global.llmModels[0].model;
|
||||
|
||||
const { result, tokens } = await createQuestionGuide({
|
||||
const { result, inputTokens, outputTokens } = await createQuestionGuide({
|
||||
messages,
|
||||
model: qgModel,
|
||||
customPrompt: questionGuide?.customPrompt
|
||||
});
|
||||
|
||||
pushQuestionGuideUsage({
|
||||
tokens,
|
||||
inputTokens,
|
||||
outputTokens,
|
||||
teamId,
|
||||
tmbId
|
||||
});
|
||||
|
@@ -89,7 +89,7 @@ async function handler(req: NextApiRequest) {
|
||||
pushGenerateVectorUsage({
|
||||
teamId,
|
||||
tmbId,
|
||||
tokens,
|
||||
inputTokens: tokens,
|
||||
model: vectorModelData.model
|
||||
});
|
||||
|
||||
|
@@ -36,7 +36,7 @@ async function handler(req: ApiRequestProps<UpdateDatasetDataProps>) {
|
||||
pushGenerateVectorUsage({
|
||||
teamId,
|
||||
tmbId,
|
||||
tokens,
|
||||
inputTokens: tokens,
|
||||
model: vectorModel
|
||||
});
|
||||
} else {
|
||||
|
@@ -74,14 +74,15 @@ async function handler(req: NextApiRequest) {
|
||||
const { totalPoints } = pushGenerateVectorUsage({
|
||||
teamId,
|
||||
tmbId,
|
||||
tokens,
|
||||
inputTokens: tokens,
|
||||
model: dataset.vectorModel,
|
||||
source: apikey ? UsageSourceEnum.api : UsageSourceEnum.fastgpt,
|
||||
|
||||
...(aiExtensionResult &&
|
||||
extensionModel && {
|
||||
extensionModel: extensionModel.name,
|
||||
extensionTokens: aiExtensionResult.tokens
|
||||
extensionInputTokens: aiExtensionResult.inputTokens,
|
||||
extensionOutputTokens: aiExtensionResult.outputTokens
|
||||
})
|
||||
});
|
||||
if (apikey) {
|
||||
|
@@ -57,7 +57,7 @@ async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
const { totalPoints } = pushGenerateVectorUsage({
|
||||
teamId,
|
||||
tmbId,
|
||||
tokens,
|
||||
inputTokens: tokens,
|
||||
model,
|
||||
billId,
|
||||
source: getUsageSourceByAuthType({ authType })
|
||||
|
@@ -196,7 +196,7 @@ const DatasetImportContextProvider = ({ children }: { children: React.ReactNode
|
||||
chunkSize: vectorModel?.defaultToken ? vectorModel?.defaultToken * 2 : 1024,
|
||||
showChunkInput: false,
|
||||
showPromptInput: false,
|
||||
charsPointsPrice: agentModel.charsPointsPrice,
|
||||
charsPointsPrice: agentModel.charsPointsPrice || 0,
|
||||
priceTip: t('dataset:import.Auto mode Estimated Price Tips', {
|
||||
price: agentModel.charsPointsPrice
|
||||
}),
|
||||
@@ -211,7 +211,7 @@ const DatasetImportContextProvider = ({ children }: { children: React.ReactNode
|
||||
chunkSize: embeddingChunkSize,
|
||||
showChunkInput: true,
|
||||
showPromptInput: false,
|
||||
charsPointsPrice: vectorModel.charsPointsPrice,
|
||||
charsPointsPrice: vectorModel.charsPointsPrice || 0,
|
||||
priceTip: t('dataset:import.Embedding Estimated Price Tips', {
|
||||
price: vectorModel.charsPointsPrice
|
||||
}),
|
||||
@@ -226,7 +226,7 @@ const DatasetImportContextProvider = ({ children }: { children: React.ReactNode
|
||||
chunkSize: qaChunkSize,
|
||||
showChunkInput: true,
|
||||
showPromptInput: true,
|
||||
charsPointsPrice: agentModel.charsPointsPrice,
|
||||
charsPointsPrice: agentModel.charsPointsPrice || 0,
|
||||
priceTip: t('dataset:import.Auto mode Estimated Price Tips', {
|
||||
price: agentModel.charsPointsPrice
|
||||
}),
|
||||
|
@@ -12,7 +12,10 @@ import { getLLMModel } from '@fastgpt/service/core/ai/model';
|
||||
import { checkTeamAiPointsAndLock } from './utils';
|
||||
import { checkInvalidChunkAndLock } from '@fastgpt/service/core/dataset/training/utils';
|
||||
import { addMinutes } from 'date-fns';
|
||||
import { countGptMessagesTokens } from '@fastgpt/service/common/string/tiktoken/index';
|
||||
import {
|
||||
countGptMessagesTokens,
|
||||
countPromptTokens
|
||||
} from '@fastgpt/service/common/string/tiktoken/index';
|
||||
import { pushDataListToTrainingQueueByCollectionId } from '@fastgpt/service/core/dataset/training/controller';
|
||||
import { loadRequestMessages } from '@fastgpt/service/core/chat/utils';
|
||||
import { llmCompletionsBodyFormat } from '@fastgpt/service/core/ai/utils';
|
||||
@@ -153,7 +156,8 @@ ${replaceVariable(Prompt_AgentQA.fixedText, { text })}`;
|
||||
pushQAUsage({
|
||||
teamId: data.teamId,
|
||||
tmbId: data.tmbId,
|
||||
tokens: await countGptMessagesTokens(messages),
|
||||
inputTokens: await countGptMessagesTokens(messages),
|
||||
outputTokens: await countPromptTokens(answer),
|
||||
billId: data.billId,
|
||||
model: modelData.model
|
||||
});
|
||||
|
@@ -111,7 +111,7 @@ export async function generateVector(): Promise<any> {
|
||||
pushGenerateVectorUsage({
|
||||
teamId: data.teamId,
|
||||
tmbId: data.tmbId,
|
||||
tokens,
|
||||
inputTokens: tokens,
|
||||
model: data.model,
|
||||
billId: data.billId
|
||||
});
|
||||
|
@@ -37,7 +37,8 @@ export const pushChatUsage = ({
|
||||
moduleName: item.moduleName,
|
||||
amount: item.totalPoints || 0,
|
||||
model: item.model,
|
||||
tokens: item.tokens
|
||||
inputTokens: item.inputTokens,
|
||||
outputTokens: item.outputTokens
|
||||
}))
|
||||
});
|
||||
addLog.info(`finish completions`, {
|
||||
@@ -52,20 +53,23 @@ export const pushQAUsage = async ({
|
||||
teamId,
|
||||
tmbId,
|
||||
model,
|
||||
tokens,
|
||||
inputTokens,
|
||||
outputTokens,
|
||||
billId
|
||||
}: {
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
model: string;
|
||||
tokens: number;
|
||||
inputTokens: number;
|
||||
outputTokens: number;
|
||||
billId: string;
|
||||
}) => {
|
||||
// 计算价格
|
||||
const { totalPoints } = formatModelChars2Points({
|
||||
model,
|
||||
modelType: ModelTypeEnum.llm,
|
||||
tokens
|
||||
inputTokens,
|
||||
outputTokens
|
||||
});
|
||||
|
||||
concatUsage({
|
||||
@@ -73,7 +77,8 @@ export const pushQAUsage = async ({
|
||||
teamId,
|
||||
tmbId,
|
||||
totalPoints,
|
||||
tokens,
|
||||
inputTokens,
|
||||
outputTokens,
|
||||
listIndex: 1
|
||||
});
|
||||
|
||||
@@ -84,30 +89,32 @@ export const pushGenerateVectorUsage = ({
|
||||
billId,
|
||||
teamId,
|
||||
tmbId,
|
||||
tokens,
|
||||
inputTokens,
|
||||
model,
|
||||
source = UsageSourceEnum.fastgpt,
|
||||
extensionModel,
|
||||
extensionTokens
|
||||
extensionInputTokens,
|
||||
extensionOutputTokens
|
||||
}: {
|
||||
billId?: string;
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
tokens: number;
|
||||
inputTokens: number;
|
||||
model: string;
|
||||
source?: UsageSourceEnum;
|
||||
|
||||
extensionModel?: string;
|
||||
extensionTokens?: number;
|
||||
extensionInputTokens?: number;
|
||||
extensionOutputTokens?: number;
|
||||
}) => {
|
||||
const { totalPoints: totalVector, modelName: vectorModelName } = formatModelChars2Points({
|
||||
modelType: ModelTypeEnum.vector,
|
||||
model,
|
||||
tokens
|
||||
inputTokens
|
||||
});
|
||||
|
||||
const { extensionTotalPoints, extensionModelName } = (() => {
|
||||
if (!extensionModel || !extensionTokens)
|
||||
if (!extensionModel || !extensionInputTokens)
|
||||
return {
|
||||
extensionTotalPoints: 0,
|
||||
extensionModelName: ''
|
||||
@@ -115,7 +122,8 @@ export const pushGenerateVectorUsage = ({
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
modelType: ModelTypeEnum.llm,
|
||||
model: extensionModel,
|
||||
tokens: extensionTokens
|
||||
inputTokens: extensionInputTokens,
|
||||
outputTokens: extensionOutputTokens
|
||||
});
|
||||
return {
|
||||
extensionTotalPoints: totalPoints,
|
||||
@@ -132,7 +140,7 @@ export const pushGenerateVectorUsage = ({
|
||||
tmbId,
|
||||
totalPoints,
|
||||
billId,
|
||||
tokens,
|
||||
inputTokens,
|
||||
listIndex: 0
|
||||
});
|
||||
} else {
|
||||
@@ -147,7 +155,7 @@ export const pushGenerateVectorUsage = ({
|
||||
moduleName: 'support.wallet.moduleName.index',
|
||||
amount: totalVector,
|
||||
model: vectorModelName,
|
||||
tokens
|
||||
inputTokens
|
||||
},
|
||||
...(extensionModel !== undefined
|
||||
? [
|
||||
@@ -155,7 +163,8 @@ export const pushGenerateVectorUsage = ({
|
||||
moduleName: 'core.module.template.Query extension',
|
||||
amount: extensionTotalPoints,
|
||||
model: extensionModelName,
|
||||
tokens: extensionTokens
|
||||
inputTokens: extensionInputTokens,
|
||||
outputTokens: extensionOutputTokens
|
||||
}
|
||||
]
|
||||
: [])
|
||||
@@ -166,17 +175,20 @@ export const pushGenerateVectorUsage = ({
|
||||
};
|
||||
|
||||
export const pushQuestionGuideUsage = ({
|
||||
tokens,
|
||||
inputTokens,
|
||||
outputTokens,
|
||||
teamId,
|
||||
tmbId
|
||||
}: {
|
||||
tokens: number;
|
||||
inputTokens: number;
|
||||
outputTokens: number;
|
||||
teamId: string;
|
||||
tmbId: string;
|
||||
}) => {
|
||||
const qgModel = global.llmModels[0];
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
tokens,
|
||||
inputTokens,
|
||||
outputTokens,
|
||||
model: qgModel.model,
|
||||
modelType: ModelTypeEnum.llm
|
||||
});
|
||||
@@ -192,7 +204,8 @@ export const pushQuestionGuideUsage = ({
|
||||
moduleName: 'core.app.Question Guide',
|
||||
amount: totalPoints,
|
||||
model: modelName,
|
||||
tokens
|
||||
inputTokens,
|
||||
outputTokens
|
||||
}
|
||||
]
|
||||
});
|
||||
@@ -215,7 +228,7 @@ export function pushAudioSpeechUsage({
|
||||
}) {
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
model,
|
||||
tokens: charsLength,
|
||||
inputTokens: charsLength,
|
||||
modelType: ModelTypeEnum.audioSpeech
|
||||
});
|
||||
|
||||
@@ -251,7 +264,7 @@ export function pushWhisperUsage({
|
||||
|
||||
const { totalPoints, modelName } = formatModelChars2Points({
|
||||
model: whisperModel.model,
|
||||
tokens: duration,
|
||||
inputTokens: duration,
|
||||
modelType: ModelTypeEnum.whisper,
|
||||
multiple: 60
|
||||
});
|
||||
|
Reference in New Issue
Block a user