4.8.21 feature (#3720)

* agent search demo

* edit form force close image select

* feat: llm params and doubao1.5

* perf: model error tip

* fix: template register path

* package
This commit is contained in:
Archer
2025-02-08 10:44:33 +08:00
committed by GitHub
parent bb82b515e0
commit 42b2046f96
45 changed files with 896 additions and 109 deletions

View File

@@ -5,7 +5,7 @@
"model": "deepseek-chat",
"name": "Deepseek-chat",
"maxContext": 64000,
"maxResponse": 4096,
"maxResponse": 8000,
"quoteMaxToken": 60000,
"maxTemperature": 1.5,
"vision": false,
@@ -25,7 +25,7 @@
"model": "deepseek-reasoner",
"name": "Deepseek-reasoner",
"maxContext": 64000,
"maxResponse": 4096,
"maxResponse": 8000,
"quoteMaxToken": 60000,
"maxTemperature": null,
"vision": false,

View File

@@ -1,6 +1,94 @@
{
"provider": "Doubao",
"list": [
{
"model": "Doubao-1.5-lite-32k",
"name": "Doubao-1.5-lite-32k",
"maxContext": 32000,
"maxResponse": 4000,
"quoteMaxToken": 32000,
"maxTemperature": 1,
"vision": false,
"toolChoice": true,
"functionCall": false,
"defaultSystemChatPrompt": "",
"datasetProcess": true,
"usedInClassify": true,
"customCQPrompt": "",
"usedInExtractFields": true,
"usedInQueryExtension": true,
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {},
"fieldMap": {},
"type": "llm"
},
{
"model": "Doubao-1.5-pro-32k",
"name": "Doubao-1.5-pro-32k",
"maxContext": 32000,
"maxResponse": 4000,
"quoteMaxToken": 32000,
"maxTemperature": 1,
"vision": false,
"toolChoice": true,
"functionCall": false,
"defaultSystemChatPrompt": "",
"datasetProcess": true,
"usedInClassify": true,
"customCQPrompt": "",
"usedInExtractFields": true,
"usedInQueryExtension": true,
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {},
"fieldMap": {},
"type": "llm"
},
{
"model": "Doubao-1.5-pro-256k",
"name": "Doubao-1.5-pro-256k",
"maxContext": 256000,
"maxResponse": 12000,
"quoteMaxToken": 256000,
"maxTemperature": 1,
"vision": false,
"toolChoice": true,
"functionCall": false,
"defaultSystemChatPrompt": "",
"datasetProcess": true,
"usedInClassify": true,
"customCQPrompt": "",
"usedInExtractFields": true,
"usedInQueryExtension": true,
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {},
"fieldMap": {},
"type": "llm"
},
{
"model": "Doubao-1.5-vision-pro-32k",
"name": "Doubao-1.5-vision-pro-32k",
"maxContext": 32000,
"maxResponse": 4000,
"quoteMaxToken": 32000,
"maxTemperature": 1,
"vision": true,
"toolChoice": true,
"functionCall": false,
"defaultSystemChatPrompt": "",
"datasetProcess": true,
"usedInClassify": true,
"customCQPrompt": "",
"usedInExtractFields": true,
"usedInQueryExtension": true,
"customExtractPrompt": "",
"usedInToolCall": true,
"defaultConfig": {},
"fieldMap": {},
"type": "llm"
},
{
"model": "Doubao-lite-4k",
"name": "Doubao-lite-4k",

View File

@@ -8,6 +8,9 @@
"maxResponse": 16000,
"quoteMaxToken": 60000,
"maxTemperature": 1.2,
"showTopP": true,
"responseFormatList": ["text", "json_object", "json_schema"],
"showStopSign": true,
"vision": true,
"toolChoice": true,
"functionCall": true,

View File

@@ -31,10 +31,12 @@ import { delay } from '@fastgpt/global/common/system/utils';
export const loadSystemModels = async (init = false) => {
const getProviderList = () => {
const currentFileUrl = new URL(import.meta.url);
const modelsPath = path.join(
path.dirname(currentFileUrl.pathname.replace(/^\/+/, '')),
'provider'
const filePath = decodeURIComponent(
process.platform === 'win32'
? currentFileUrl.pathname.substring(1) // Remove leading slash on Windows
: currentFileUrl.pathname
);
const modelsPath = path.join(path.dirname(filePath), 'provider');
return fs.readdirSync(modelsPath) as string[];
};
@@ -150,6 +152,7 @@ export const loadSystemModels = async (init = false) => {
console.error('Load models error', error);
// @ts-ignore
global.systemModelList = undefined;
return Promise.reject(error);
}
};

View File

@@ -37,9 +37,14 @@ export const computedTemperature = ({
return temperature;
};
type CompletionsBodyType =
type CompletionsBodyType = (
| ChatCompletionCreateParamsNonStreaming
| ChatCompletionCreateParamsStreaming;
| ChatCompletionCreateParamsStreaming
) & {
response_format?: any;
json_schema?: string;
stop?: string;
};
type InferCompletionsBody<T> = T extends { stream: true }
? ChatCompletionCreateParamsStreaming
: ChatCompletionCreateParamsNonStreaming;
@@ -53,6 +58,10 @@ export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
return body as InferCompletionsBody<T>;
}
const response_format = body.response_format;
const json_schema = body.json_schema ?? undefined;
const stop = body.stop ?? undefined;
const requestBody: T = {
...body,
temperature:
@@ -62,7 +71,14 @@ export const llmCompletionsBodyFormat = <T extends CompletionsBodyType>(
temperature: body.temperature
})
: undefined,
...modelData?.defaultConfig
...modelData?.defaultConfig,
response_format: response_format
? {
type: response_format,
json_schema
}
: undefined,
stop: stop?.split('|')
};
// field map

View File

@@ -0,0 +1,277 @@
import { chats2GPTMessages } from '@fastgpt/global/core/chat/adapt';
import { ChatItemType } from '@fastgpt/global/core/chat/type';
import { DatasetSearchModeEnum } from '@fastgpt/global/core/dataset/constants';
import { getLLMModel } from '../../ai/model';
import { filterGPTMessageByMaxContext } from '../../chat/utils';
import { replaceVariable } from '@fastgpt/global/common/string/tools';
import { createChatCompletion } from '../../ai/config';
import { llmCompletionsBodyFormat } from '../../ai/utils';
import { ChatCompletionMessageParam } from '@fastgpt/global/core/ai/type';
import { SearchDataResponseItemType } from '@fastgpt/global/core/dataset/type';
import { searchDatasetData } from './controller';
type SearchDatasetDataProps = {
queries: string[];
histories: ChatItemType[];
teamId: string;
model: string;
similarity?: number; // min distance
limit: number; // max Token limit
datasetIds: string[];
searchMode?: `${DatasetSearchModeEnum}`;
usingReRank?: boolean;
reRankQuery: string;
/*
{
tags: {
$and: ["str1","str2"],
$or: ["str1","str2",null] null means no tags
},
createTime: {
$gte: 'xx',
$lte: 'xxx'
}
}
*/
collectionFilterMatch?: string;
};
const analyzeQuery = async ({ query, histories }: { query: string; histories: ChatItemType[] }) => {
const modelData = getLLMModel('gpt-4o-mini');
const systemFewShot = `
## 知识背景
FastGPT 是低代码AI应用构建平台支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
## 任务目标
基于用户历史对话和知识背景,生成多维度检索方案,确保覆盖核心语义及潜在关联维度。
## 工作流程
1. 问题解构阶段
[意图识别] 提取用户问题的核心实体和关系:
- 显性需求:直接提及的关键词
- 隐性需求:可能涉及的关联概念
[示例] 若问题为"推荐手机",需考虑价格、品牌、使用场景等维度
2. 完整性校验阶段
[完整性评估] 检查是否缺失核心实体和关系:
- 主语完整
- 多实体关系准确
[维度扩展] 检查是否需要补充:
□ 时间范围 □ 地理限定 □ 比较维度
□ 专业术语 □ 同义词替换 □ 场景参数
3. 检索生成阶段
[组合策略] 生成包含以下要素的查询序列:
① 基础查询(核心关键词)
② 扩展查询(核心+同义词)
③ 场景查询(核心+场景限定词)
④ 逆向查询(相关技术/对比对象)
## 输出规范
格式要求:
1. 每个查询为完整陈述句
2. 包含至少1个核心词+1个扩展维度
3. 按查询范围从宽到窄排序
禁止项:
- 使用问句形式
- 包含解决方案描述
- 超出话题范围的假设
## 执行示例
用户问题:"如何优化数据检索速度"
查询内容:
1. FastGPT 数据检索速度优化的常用方法
2. FastGPT 大数据量下的语义检索性能提升方案
3. FastGPT API 响应时间的优化指标
## 任务开始
`.trim();
const filterHistories = await filterGPTMessageByMaxContext({
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
maxContext: modelData.maxContext - 1000
});
const messages = [
{
role: 'system',
content: systemFewShot
},
...filterHistories,
{
role: 'user',
content: query
}
] as any;
const { response: result } = await createChatCompletion({
body: llmCompletionsBodyFormat(
{
stream: false,
model: modelData.model,
temperature: 0.1,
messages
},
modelData
)
});
let answer = result.choices?.[0]?.message?.content || '';
// Extract queries from the answer by line number
const queries = answer
.split('\n')
.map((line) => {
const match = line.match(/^\d+\.\s*(.+)$/);
return match ? match[1].trim() : null;
})
.filter(Boolean) as string[];
if (queries.length === 0) {
return [answer];
}
return queries;
};
const checkQuery = async ({
queries,
histories,
searchResult
}: {
queries: string[];
histories: ChatItemType[];
searchResult: SearchDataResponseItemType[];
}) => {
const modelData = getLLMModel('gpt-4o-mini');
const systemFewShot = `
## 知识背景
FastGPT 是低代码AI应用构建平台支持通过语义相似度实现精准数据检索。用户正在利用该功能开发数据检索应用。
## 查询结果
${searchResult.map((item) => item.q + item.a).join('---\n---')}
## 任务目标
检查"检索结果"是否覆盖用户的问题,如果无法覆盖用户问题,则再次生成检索方案。
## 工作流程
1. 检查检索结果是否覆盖用户的问题
2. 如果检索结果覆盖用户问题,则直接输出:"Done"
3. 如果无法覆盖用户问题,则结合用户问题和检索结果,生成进一步的检索方案,进行深度检索
## 输出规范
1. 每个查询均为完整的查询语句
2. 通过序号来表示多个检索内容
## 输出示例1
Done
## 输出示例2
1. 环界云计算的办公地址
2. 环界云计算的注册地址在哪里
## 任务开始
`.trim();
const filterHistories = await filterGPTMessageByMaxContext({
messages: chats2GPTMessages({ messages: histories, reserveId: false }),
maxContext: modelData.maxContext - 1000
});
const messages = [
{
role: 'system',
content: systemFewShot
},
...filterHistories,
{
role: 'user',
content: queries.join('\n')
}
] as any;
console.log(messages);
const { response: result } = await createChatCompletion({
body: llmCompletionsBodyFormat(
{
stream: false,
model: modelData.model,
temperature: 0.1,
messages
},
modelData
)
});
let answer = result.choices?.[0]?.message?.content || '';
console.log(answer);
if (answer.includes('Done')) {
return [];
}
const nextQueries = answer
.split('\n')
.map((line) => {
const match = line.match(/^\d+\.\s*(.+)$/);
return match ? match[1].trim() : null;
})
.filter(Boolean) as string[];
return nextQueries;
};
export const agentSearchDatasetData = async ({
searchRes = [],
tokens = 0,
...props
}: SearchDatasetDataProps & {
searchRes?: SearchDataResponseItemType[];
tokens?: number;
}) => {
const query = props.queries[0];
const searchResultList: SearchDataResponseItemType[] = [];
let searchQueries: string[] = [];
// 1. agent 分析问题
searchQueries = await analyzeQuery({ query, histories: props.histories });
// 2. 检索内容 + 检查
let retryTimes = 3;
while (true) {
retryTimes--;
if (retryTimes < 0) break;
console.log(searchQueries, '--');
const { searchRes: searchRes2, tokens: tokens2 } = await searchDatasetData({
...props,
queries: searchQueries
});
// console.log(searchRes2.map((item) => item.q));
// deduplicate and merge search results
const uniqueResults = searchRes2.filter((item) => {
return !searchResultList.some((existingItem) => existingItem.id === item.id);
});
searchResultList.push(...uniqueResults);
if (uniqueResults.length === 0) break;
const checkResult = await checkQuery({
queries: searchQueries,
histories: props.histories,
searchResult: searchRes2
});
if (checkResult.length > 0) {
searchQueries = checkResult;
} else {
break;
}
}
console.log(searchResultList.length);
return {
searchRes: searchResultList,
tokens: 0,
usingSimilarityFilter: false,
usingReRank: false
};
};

View File

@@ -23,8 +23,10 @@ import json5 from 'json5';
import { MongoDatasetCollectionTags } from '../tag/schema';
import { readFromSecondary } from '../../../common/mongo/utils';
import { MongoDatasetDataText } from '../data/dataTextSchema';
import { ChatItemType } from '@fastgpt/global/core/chat/type';
type SearchDatasetDataProps = {
histories?: ChatItemType[];
teamId: string;
model: string;
similarity?: number; // min distance

View File

@@ -46,7 +46,15 @@ export const runToolWithFunctionCall = async (
externalProvider,
stream,
workflowStreamResponse,
params: { temperature, maxToken, aiChatVision }
params: {
temperature,
maxToken,
aiChatVision,
aiChatTopP,
aiChatStopSign,
aiChatResponseFormat,
aiChatJsonSchema
}
} = workflowProps;
// Interactive
@@ -204,12 +212,18 @@ export const runToolWithFunctionCall = async (
const requestBody = llmCompletionsBodyFormat(
{
model: toolModel.model,
temperature,
max_tokens,
stream,
messages: requestMessages,
functions,
function_call: 'auto'
function_call: 'auto',
temperature,
max_tokens,
top_p: aiChatTopP,
stop: aiChatStopSign,
response_format: aiChatResponseFormat,
json_schema: aiChatJsonSchema
},
toolModel
);

View File

@@ -54,7 +54,15 @@ export const runToolWithPromptCall = async (
externalProvider,
stream,
workflowStreamResponse,
params: { temperature, maxToken, aiChatVision }
params: {
temperature,
maxToken,
aiChatVision,
aiChatTopP,
aiChatStopSign,
aiChatResponseFormat,
aiChatJsonSchema
}
} = workflowProps;
if (interactiveEntryToolParams) {
@@ -215,10 +223,14 @@ export const runToolWithPromptCall = async (
const requestBody = llmCompletionsBodyFormat(
{
model: toolModel.model,
stream,
messages: requestMessages,
temperature,
max_tokens,
stream,
messages: requestMessages
top_p: aiChatTopP,
stop: aiChatStopSign,
response_format: aiChatResponseFormat,
json_schema: aiChatJsonSchema
},
toolModel
);

View File

@@ -93,7 +93,15 @@ export const runToolWithToolChoice = async (
stream,
externalProvider,
workflowStreamResponse,
params: { temperature, maxToken, aiChatVision }
params: {
temperature,
maxToken,
aiChatVision,
aiChatTopP,
aiChatStopSign,
aiChatResponseFormat,
aiChatJsonSchema
}
} = workflowProps;
if (maxRunToolTimes <= 0 && response) {
@@ -263,12 +271,16 @@ export const runToolWithToolChoice = async (
const requestBody = llmCompletionsBodyFormat(
{
model: toolModel.model,
temperature,
max_tokens,
stream,
messages: requestMessages,
tools,
tool_choice: 'auto'
tool_choice: 'auto',
temperature,
max_tokens,
top_p: aiChatTopP,
stop: aiChatStopSign,
response_format: aiChatResponseFormat,
json_schema: aiChatJsonSchema
},
toolModel
);

View File

@@ -16,12 +16,16 @@ export type DispatchToolModuleProps = ModuleDispatchProps<{
[NodeInputKeyEnum.history]?: ChatItemType[];
[NodeInputKeyEnum.userChatInput]: string;
[NodeInputKeyEnum.fileUrlList]?: string[];
[NodeInputKeyEnum.aiModel]: string;
[NodeInputKeyEnum.aiSystemPrompt]: string;
[NodeInputKeyEnum.aiChatTemperature]: number;
[NodeInputKeyEnum.aiChatMaxToken]: number;
[NodeInputKeyEnum.aiChatVision]?: boolean;
[NodeInputKeyEnum.fileUrlList]?: string[];
[NodeInputKeyEnum.aiChatTopP]?: number;
[NodeInputKeyEnum.aiChatStopSign]?: string;
[NodeInputKeyEnum.aiChatResponseFormat]?: string;
[NodeInputKeyEnum.aiChatJsonSchema]?: string;
}> & {
messages: ChatCompletionMessageParam[];
toolNodes: ToolNodeItemType[];

View File

@@ -89,6 +89,11 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
quotePrompt,
aiChatVision,
aiChatReasoning = true,
aiChatTopP,
aiChatStopSign,
aiChatResponseFormat,
aiChatJsonSchema,
fileUrlList: fileLinks, // node quote file links
stringQuoteText //abandon
}
@@ -100,6 +105,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
return Promise.reject('The chat model is undefined, you need to select a chat model.');
}
aiChatVision = modelConstantsData.vision && aiChatVision;
stream = stream && isResponseAnswerText;
aiChatReasoning = !!aiChatReasoning && !!modelConstantsData.reasoning;
@@ -160,17 +166,21 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
const requestMessages = await loadRequestMessages({
messages: filterMessages,
useVision: modelConstantsData.vision && aiChatVision,
useVision: aiChatVision,
origin: requestOrigin
});
const requestBody = llmCompletionsBodyFormat(
{
model: modelConstantsData.model,
stream,
messages: requestMessages,
temperature,
max_tokens,
stream,
messages: requestMessages
top_p: aiChatTopP,
stop: aiChatStopSign,
response_format: aiChatResponseFormat as any,
json_schema: aiChatJsonSchema
},
modelConstantsData
);
@@ -259,11 +269,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
outputTokens: outputTokens,
query: `${userChatInput}`,
maxToken: max_tokens,
historyPreview: getHistoryPreview(
chatCompleteMessages,
10000,
modelConstantsData.vision && aiChatVision
),
historyPreview: getHistoryPreview(chatCompleteMessages, 10000, aiChatVision),
contextTotalLen: completeMessages.length
},
[DispatchNodeResponseKeyEnum.nodeDispatchUsages]: [