monorepo packages (#344)

This commit is contained in:
Archer
2023-09-24 18:02:09 +08:00
committed by GitHub
parent a4ff5a3f73
commit 3d7178d06f
535 changed files with 12048 additions and 227 deletions

View File

@@ -0,0 +1,172 @@
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
import { ChatContextFilter } from '@/service/common/tiktoken';
import type { ChatHistoryItemResType, ChatItemType } from '@/types/chat';
import { ChatRoleEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { getAIChatApi, axiosConfig } from '@/service/lib/openai';
import type { ClassifyQuestionAgentItemType } from '@/types/app';
import { SystemInputEnum } from '@/constants/app';
import { SpecialInputKeyEnum } from '@/constants/flow';
import { FlowModuleTypeEnum } from '@/constants/flow';
import { ModuleDispatchProps } from '@/types/core/modules';
import { replaceVariable } from '@/utils/common/tools/text';
import { Prompt_CQJson } from '@/prompts/core/agent';
import { defaultCQModel } from '@/pages/api/system/getInitData';
type Props = ModuleDispatchProps<{
systemPrompt?: string;
history?: ChatItemType[];
[SystemInputEnum.userChatInput]: string;
[SpecialInputKeyEnum.agents]: ClassifyQuestionAgentItemType[];
}>;
type CQResponse = {
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
[key: string]: any;
};
const agentFunName = 'agent_user_question';
/* request openai chat */
export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse> => {
const {
moduleName,
userOpenaiAccount,
inputs: { agents, userChatInput }
} = props as Props;
if (!userChatInput) {
return Promise.reject('Input is empty');
}
const cqModel = global.cqModel || defaultCQModel;
const { arg, tokens } = await (async () => {
if (cqModel.functionCall) {
return functionCall(props);
}
return completions(props);
})();
const result = agents.find((item) => item.key === arg?.type) || agents[0];
return {
[result.key]: 1,
[TaskResponseKeyEnum.responseData]: {
moduleType: FlowModuleTypeEnum.classifyQuestion,
moduleName,
price: userOpenaiAccount?.key ? 0 : cqModel.price * tokens,
model: cqModel.name || '',
tokens,
cqList: agents,
cqResult: result.value
}
};
};
async function functionCall({
userOpenaiAccount,
inputs: { agents, systemPrompt, history = [], userChatInput }
}: Props) {
const cqModel = global.cqModel;
const messages: ChatItemType[] = [
...(systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: systemPrompt
}
]
: []),
...history,
{
obj: ChatRoleEnum.Human,
value: userChatInput
}
];
const filterMessages = ChatContextFilter({
messages,
maxTokens: cqModel.maxToken
});
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
// function body
const agentFunction = {
name: agentFunName,
description: '判断用户问题的类型属于哪方面,返回对应的字段',
parameters: {
type: 'object',
properties: {
type: {
type: 'string',
description: agents.map((item) => `${item.value},返回:'${item.key}'`).join(''),
enum: agents.map((item) => item.key)
}
},
required: ['type']
}
};
const chatAPI = getAIChatApi(userOpenaiAccount);
const response = await chatAPI.createChatCompletion(
{
model: cqModel.model,
temperature: 0,
messages: [...adaptMessages],
function_call: { name: agentFunName },
functions: [agentFunction]
},
{
...axiosConfig(userOpenaiAccount)
}
);
const arg = JSON.parse(response.data.choices?.[0]?.message?.function_call?.arguments || '');
return {
arg,
tokens: response.data.usage?.total_tokens || 0
};
}
async function completions({
userOpenaiAccount,
inputs: { agents, systemPrompt = '', history = [], userChatInput }
}: Props) {
const extractModel = global.extractModel;
const messages: ChatItemType[] = [
{
obj: ChatRoleEnum.Human,
value: replaceVariable(extractModel.prompt || Prompt_CQJson, {
systemPrompt,
typeList: agents.map((item) => `ID: "${item.key}", 问题类型:${item.value}`).join('\n'),
text: `${history.map((item) => `${item.obj}:${item.value}`).join('\n')}
Human:${userChatInput}`
})
}
];
const chatAPI = getAIChatApi(userOpenaiAccount);
const { data } = await chatAPI.createChatCompletion(
{
model: extractModel.model,
temperature: 0.01,
messages: adaptChat2GptMessages({ messages, reserveId: false }),
stream: false
},
{
timeout: 480000,
...axiosConfig(userOpenaiAccount)
}
);
const answer = data.choices?.[0].message?.content || '';
const totalTokens = data.usage?.total_tokens || 0;
const id = agents.find((item) => answer.includes(item.key))?.key || '';
return {
tokens: totalTokens,
arg: { type: id }
};
}

View File

@@ -0,0 +1,227 @@
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
import { ChatContextFilter } from '@/service/common/tiktoken';
import type { ChatHistoryItemResType, ChatItemType } from '@/types/chat';
import { ChatRoleEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { getAIChatApi, axiosConfig } from '@/service/lib/openai';
import type { ContextExtractAgentItemType } from '@/types/app';
import { ContextExtractEnum } from '@/constants/flow/flowField';
import { FlowModuleTypeEnum } from '@/constants/flow';
import { ModuleDispatchProps } from '@/types/core/modules';
import { Prompt_ExtractJson } from '@/prompts/core/agent';
import { replaceVariable } from '@/utils/common/tools/text';
import { defaultExtractModel } from '@/pages/api/system/getInitData';
type Props = ModuleDispatchProps<{
history?: ChatItemType[];
[ContextExtractEnum.content]: string;
[ContextExtractEnum.extractKeys]: ContextExtractAgentItemType[];
[ContextExtractEnum.description]: string;
}>;
type Response = {
[ContextExtractEnum.success]?: boolean;
[ContextExtractEnum.failed]?: boolean;
[ContextExtractEnum.fields]: string;
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
};
const agentFunName = 'agent_extract_data';
export async function dispatchContentExtract(props: Props): Promise<Response> {
const {
moduleName,
userOpenaiAccount,
inputs: { content, description, extractKeys }
} = props;
if (!content) {
return Promise.reject('Input is empty');
}
const extractModel = global.extractModel || defaultExtractModel;
const { arg, tokens } = await (async () => {
if (extractModel.functionCall) {
return functionCall(props);
}
return completions(props);
})();
// remove invalid key
for (let key in arg) {
if (!extractKeys.find((item) => item.key === key)) {
delete arg[key];
}
}
// auth fields
let success = !extractKeys.find((item) => !arg[item.key]);
// auth empty value
if (success) {
for (const key in arg) {
if (arg[key] === '') {
success = false;
break;
}
}
}
return {
[ContextExtractEnum.success]: success ? true : undefined,
[ContextExtractEnum.failed]: success ? undefined : true,
[ContextExtractEnum.fields]: JSON.stringify(arg),
...arg,
[TaskResponseKeyEnum.responseData]: {
moduleType: FlowModuleTypeEnum.contentExtract,
moduleName,
price: userOpenaiAccount?.key ? 0 : extractModel.price * tokens,
model: extractModel.name || '',
tokens,
extractDescription: description,
extractResult: arg
}
};
}
async function functionCall({
userOpenaiAccount,
inputs: { history = [], content, extractKeys, description }
}: Props) {
const extractModel = global.extractModel;
const messages: ChatItemType[] = [
...history,
{
obj: ChatRoleEnum.Human,
value: content
}
];
const filterMessages = ChatContextFilter({
messages,
maxTokens: extractModel.maxToken
});
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
const properties: Record<
string,
{
type: string;
description: string;
}
> = {};
extractKeys.forEach((item) => {
properties[item.key] = {
type: 'string',
description: item.desc
};
});
// function body
const agentFunction = {
name: agentFunName,
description: `${description}\n如果内容不存在返回空字符串。`,
parameters: {
type: 'object',
properties,
required: extractKeys.filter((item) => item.required).map((item) => item.key)
}
};
const chatAPI = getAIChatApi(userOpenaiAccount);
const response = await chatAPI.createChatCompletion(
{
model: extractModel.model,
temperature: 0,
messages: [...adaptMessages],
function_call: { name: agentFunName },
functions: [agentFunction]
},
{
...axiosConfig(userOpenaiAccount)
}
);
const arg: Record<string, any> = (() => {
try {
return JSON.parse(response.data.choices?.[0]?.message?.function_call?.arguments || '{}');
} catch (error) {
return {};
}
})();
const tokens = response.data.usage?.total_tokens || 0;
return {
tokens,
arg
};
}
async function completions({
userOpenaiAccount,
inputs: { history = [], content, extractKeys, description }
}: Props) {
const extractModel = global.extractModel;
const messages: ChatItemType[] = [
{
obj: ChatRoleEnum.Human,
value: replaceVariable(extractModel.prompt || Prompt_ExtractJson, {
description,
json: extractKeys
.map(
(item) =>
`key="${item.key}",描述="${item.desc}"required="${
item.required ? 'true' : 'false'
}"`
)
.join('\n'),
text: `${history.map((item) => `${item.obj}:${item.value}`).join('\n')}
Human: ${content}`
})
}
];
const chatAPI = getAIChatApi(userOpenaiAccount);
const { data } = await chatAPI.createChatCompletion(
{
model: extractModel.model,
temperature: 0.01,
messages: adaptChat2GptMessages({ messages, reserveId: false }),
stream: false
},
{
timeout: 480000,
...axiosConfig(userOpenaiAccount)
}
);
const answer = data.choices?.[0].message?.content || '';
const totalTokens = data.usage?.total_tokens || 0;
// parse response
const start = answer.indexOf('{');
const end = answer.lastIndexOf('}');
if (start === -1 || end === -1)
return {
tokens: totalTokens,
arg: {}
};
const jsonStr = answer
.substring(start, end + 1)
.replace(/(\\n|\\)/g, '')
.replace(/ /g, '');
try {
return {
tokens: totalTokens,
arg: JSON.parse(jsonStr) as Record<string, any>
};
} catch (error) {
return {
tokens: totalTokens,
arg: {}
};
}
}

View File

@@ -0,0 +1,405 @@
import type { NextApiResponse } from 'next';
import { ChatContextFilter } from '@/service/common/tiktoken';
import type { ChatItemType, QuoteItemType } from '@/types/chat';
import type { ChatHistoryItemResType } from '@/types/chat';
import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { SSEParseData, parseStreamChunk } from '@/utils/sse';
import { textAdaptGptResponse } from '@/utils/adapt';
import { getAIChatApi, axiosConfig } from '@/service/lib/openai';
import { TaskResponseKeyEnum } from '@/constants/chat';
import { getChatModel } from '@/service/utils/data';
import { countModelPrice } from '@/service/common/bill/push';
import { ChatModelItemType } from '@/types/model';
import { textCensor } from '@/api/service/plugins';
import { ChatCompletionRequestMessageRoleEnum } from 'openai';
import { AppModuleItemType } from '@/types/app';
import { countMessagesTokens, sliceMessagesTB } from '@/utils/common/tiktoken';
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
import { defaultQuotePrompt, defaultQuoteTemplate } from '@/prompts/core/AIChat';
import type { AIChatProps } from '@/types/core/aiChat';
import { replaceVariable } from '@/utils/common/tools/text';
import { FlowModuleTypeEnum } from '@/constants/flow';
import { ModuleDispatchProps } from '@/types/core/modules';
import { Readable } from 'stream';
import { responseWrite, responseWriteController } from '@/service/common/stream';
import { addLog } from '@/service/utils/tools';
export type ChatProps = ModuleDispatchProps<
AIChatProps & {
userChatInput: string;
history?: ChatItemType[];
quoteQA?: QuoteItemType[];
limitPrompt?: string;
}
>;
export type ChatResponse = {
[TaskResponseKeyEnum.answerText]: string;
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
finish: boolean;
};
/* request openai chat */
export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResponse> => {
let {
res,
moduleName,
stream = false,
detail = false,
userOpenaiAccount,
outputs,
inputs: {
model = global.chatModels[0]?.model,
temperature = 0,
maxToken = 4000,
history = [],
quoteQA = [],
userChatInput,
systemPrompt = '',
limitPrompt,
quoteTemplate,
quotePrompt
}
} = props;
if (!userChatInput) {
return Promise.reject('Question is empty');
}
// temperature adapt
const modelConstantsData = getChatModel(model);
if (!modelConstantsData) {
return Promise.reject('The chat model is undefined, you need to select a chat model.');
}
const { filterQuoteQA, quoteText } = filterQuote({
quoteQA,
model: modelConstantsData,
quoteTemplate
});
if (modelConstantsData.censor) {
await textCensor({
text: `${systemPrompt}
${quoteText}
${userChatInput}
`
});
}
const { messages, filterMessages } = getChatMessages({
model: modelConstantsData,
history,
quoteText,
quotePrompt,
userChatInput,
systemPrompt,
limitPrompt
});
const { max_tokens } = getMaxTokens({
model: modelConstantsData,
maxToken,
filterMessages
});
// console.log(messages);
// FastGPT temperature range: 1~10
temperature = +(modelConstantsData.maxTemperature * (temperature / 10)).toFixed(2);
temperature = Math.max(temperature, 0.01);
const chatAPI = getAIChatApi(userOpenaiAccount);
const response = await chatAPI.createChatCompletion(
{
model,
temperature,
max_tokens,
messages: [
...(modelConstantsData.defaultSystem
? [
{
role: ChatCompletionRequestMessageRoleEnum.System,
content: modelConstantsData.defaultSystem
}
]
: []),
...messages
],
stream
},
{
timeout: 480000,
responseType: stream ? 'stream' : 'json',
...axiosConfig(userOpenaiAccount)
}
);
const { answerText, totalTokens, completeMessages } = await (async () => {
if (stream) {
// sse response
const { answer } = await streamResponse({
res,
detail,
response
});
// count tokens
const completeMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
const totalTokens = countMessagesTokens({
messages: completeMessages
});
targetResponse({ res, detail, outputs });
return {
answerText: answer,
totalTokens,
completeMessages
};
} else {
const answer = response.data.choices?.[0].message?.content || '';
const totalTokens = response.data.usage?.total_tokens || 0;
const completeMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
return {
answerText: answer,
totalTokens,
completeMessages
};
}
})();
return {
[TaskResponseKeyEnum.answerText]: answerText,
[TaskResponseKeyEnum.responseData]: {
moduleType: FlowModuleTypeEnum.chatNode,
moduleName,
price: userOpenaiAccount?.key ? 0 : countModelPrice({ model, tokens: totalTokens }),
model: modelConstantsData.name,
tokens: totalTokens,
question: userChatInput,
maxToken: max_tokens,
quoteList: filterQuoteQA,
historyPreview: getHistoryPreview(completeMessages)
},
finish: true
};
};
function filterQuote({
quoteQA = [],
model,
quoteTemplate
}: {
quoteQA: ChatProps['inputs']['quoteQA'];
model: ChatModelItemType;
quoteTemplate?: string;
}) {
const sliceResult = sliceMessagesTB({
maxTokens: model.quoteMaxToken,
messages: quoteQA.map((item, index) => ({
obj: ChatRoleEnum.System,
value: replaceVariable(quoteTemplate || defaultQuoteTemplate, {
...item,
index: `${index + 1}`
})
}))
});
// slice filterSearch
const filterQuoteQA = quoteQA.slice(0, sliceResult.length);
const quoteText =
filterQuoteQA.length > 0
? `${filterQuoteQA
.map((item, index) =>
replaceVariable(quoteTemplate || defaultQuoteTemplate, {
...item,
index: `${index + 1}`
})
)
.join('\n')}`
: '';
return {
filterQuoteQA,
quoteText
};
}
function getChatMessages({
quotePrompt,
quoteText,
history = [],
systemPrompt,
limitPrompt,
userChatInput,
model
}: {
quotePrompt?: string;
quoteText: string;
history: ChatProps['inputs']['history'];
systemPrompt: string;
limitPrompt?: string;
userChatInput: string;
model: ChatModelItemType;
}) {
const question = quoteText
? replaceVariable(quotePrompt || defaultQuotePrompt, {
quote: quoteText,
question: userChatInput
})
: userChatInput;
const messages: ChatItemType[] = [
...(systemPrompt
? [
{
obj: ChatRoleEnum.System,
value: systemPrompt
}
]
: []),
...history,
...(limitPrompt
? [
{
obj: ChatRoleEnum.System,
value: limitPrompt
}
]
: []),
{
obj: ChatRoleEnum.Human,
value: question
}
];
const filterMessages = ChatContextFilter({
messages,
maxTokens: Math.ceil(model.contextMaxToken - 300) // filter token. not response maxToken
});
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
return {
messages: adaptMessages,
filterMessages
};
}
function getMaxTokens({
maxToken,
model,
filterMessages = []
}: {
maxToken: number;
model: ChatModelItemType;
filterMessages: ChatProps['inputs']['history'];
}) {
const tokensLimit = model.contextMaxToken;
/* count response max token */
const promptsToken = countMessagesTokens({
messages: filterMessages
});
maxToken = maxToken + promptsToken > tokensLimit ? tokensLimit - promptsToken : maxToken;
return {
max_tokens: maxToken
};
}
function targetResponse({
res,
outputs,
detail
}: {
res: NextApiResponse;
outputs: AppModuleItemType['outputs'];
detail: boolean;
}) {
const targets =
outputs.find((output) => output.key === TaskResponseKeyEnum.answerText)?.targets || [];
if (targets.length === 0) return;
responseWrite({
res,
event: detail ? sseResponseEventEnum.answer : undefined,
data: textAdaptGptResponse({
text: '\n'
})
});
}
async function streamResponse({
res,
detail,
response
}: {
res: NextApiResponse;
detail: boolean;
response: any;
}) {
return new Promise<{ answer: string }>((resolve, reject) => {
const stream = response.data as Readable;
let answer = '';
const parseData = new SSEParseData();
const write = responseWriteController({
res,
readStream: stream
});
stream.on('data', (data) => {
if (res.closed) {
stream.destroy();
return resolve({ answer });
}
const parse = parseStreamChunk(data);
parse.forEach((item) => {
const { data } = parseData.parse(item);
if (!data || data === '[DONE]') return;
const content: string = data?.choices?.[0]?.delta?.content || '';
if (data.error) {
addLog.error(`SSE response`, data.error);
} else {
answer += content;
responseWrite({
write,
event: detail ? sseResponseEventEnum.answer : undefined,
data: textAdaptGptResponse({
text: content
})
});
}
});
});
stream.on('end', () => {
resolve({ answer });
});
stream.on('close', () => {
resolve({ answer });
});
stream.on('error', (err) => {
reject(err);
});
});
}
function getHistoryPreview(completeMessages: ChatItemType[]) {
return completeMessages.map((item, i) => {
if (item.obj === ChatRoleEnum.System) return item;
if (i >= completeMessages.length - 2) return item;
return {
...item,
value: item.value.length > 15 ? `${item.value.slice(0, 15)}...` : item.value
};
});
}

View File

@@ -0,0 +1,8 @@
export * from './init/history';
export * from './init/userChatInput';
export * from './chat/oneapi';
export * from './kb/search';
export * from './tools/answer';
export * from './tools/http';
export * from './agent/classifyQuestion';
export * from './agent/extract';

View File

@@ -0,0 +1,18 @@
import { SystemInputEnum } from '@/constants/app';
import { ChatItemType } from '@/types/chat';
import type { ModuleDispatchProps } from '@/types/core/modules';
export type HistoryProps = ModuleDispatchProps<{
maxContext: number;
[SystemInputEnum.history]: ChatItemType[];
}>;
export const dispatchHistory = (props: Record<string, any>) => {
const {
inputs: { maxContext = 5, history = [] }
} = props as HistoryProps;
return {
history: maxContext > 0 ? history.slice(-maxContext) : []
};
};

View File

@@ -0,0 +1,15 @@
import { SystemInputEnum } from '@/constants/app';
import type { ModuleDispatchProps } from '@/types/core/modules';
export type UserChatInputProps = ModuleDispatchProps<{
[SystemInputEnum.userChatInput]: string;
}>;
export const dispatchChatInput = (props: Record<string, any>) => {
const {
inputs: { userChatInput }
} = props as UserChatInputProps;
return {
userChatInput
};
};

View File

@@ -0,0 +1,74 @@
import { PgClient } from '@/service/pg';
import type { ChatHistoryItemResType } from '@/types/chat';
import { TaskResponseKeyEnum } from '@/constants/chat';
import { getVector } from '@/pages/api/openapi/plugin/vector';
import { countModelPrice } from '@/service/common/bill/push';
import type { SelectedDatasetType } from '@/types/core/dataset';
import type { QuoteItemType } from '@/types/chat';
import { PgDatasetTableName } from '@/constants/plugin';
import { FlowModuleTypeEnum } from '@/constants/flow';
import { ModuleDispatchProps } from '@/types/core/modules';
type KBSearchProps = ModuleDispatchProps<{
kbList: SelectedDatasetType;
similarity: number;
limit: number;
userChatInput: string;
}>;
export type KBSearchResponse = {
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
isEmpty?: boolean;
unEmpty?: boolean;
quoteQA: QuoteItemType[];
};
export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSearchResponse> {
const {
moduleName,
inputs: { kbList = [], similarity = 0.4, limit = 5, userChatInput }
} = props as KBSearchProps;
if (kbList.length === 0) {
return Promise.reject("You didn't choose the knowledge base");
}
if (!userChatInput) {
return Promise.reject('Your input is empty');
}
// get vector
const vectorModel = kbList[0]?.vectorModel || global.vectorModels[0];
const { vectors, tokenLen } = await getVector({
model: vectorModel.model,
input: [userChatInput]
});
// search kb
const res: any = await PgClient.query(
`BEGIN;
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
select kb_id,id,q,a,source,file_id from ${PgDatasetTableName} where kb_id IN (${kbList
.map((item) => `'${item.kbId}'`)
.join(',')}) AND vector <#> '[${vectors[0]}]' < -${similarity} order by vector <#> '[${
vectors[0]
}]' limit ${limit};
COMMIT;`
);
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];
return {
isEmpty: searchRes.length === 0 ? true : undefined,
unEmpty: searchRes.length > 0 ? true : undefined,
quoteQA: searchRes,
responseData: {
moduleType: FlowModuleTypeEnum.kbSearchNode,
moduleName,
price: countModelPrice({ model: vectorModel.model, tokens: tokenLen }),
model: vectorModel.name,
tokens: tokenLen,
similarity,
limit
}
};
}

View File

@@ -0,0 +1,36 @@
import { sseResponseEventEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { sseResponse } from '@/service/utils/tools';
import { textAdaptGptResponse } from '@/utils/adapt';
import type { ModuleDispatchProps } from '@/types/core/modules';
export type AnswerProps = ModuleDispatchProps<{
text: string;
}>;
export type AnswerResponse = {
[TaskResponseKeyEnum.answerText]: string;
finish: boolean;
};
export const dispatchAnswer = (props: Record<string, any>): AnswerResponse => {
const {
res,
detail,
stream,
inputs: { text = '' }
} = props as AnswerProps;
if (stream) {
sseResponse({
res,
event: detail ? sseResponseEventEnum.answer : undefined,
data: textAdaptGptResponse({
text: text.replace(/\\n/g, '\n')
})
});
}
return {
[TaskResponseKeyEnum.answerText]: text,
finish: true
};
};

View File

@@ -0,0 +1,78 @@
import { TaskResponseKeyEnum } from '@/constants/chat';
import { HttpPropsEnum } from '@/constants/flow/flowField';
import { ChatHistoryItemResType } from '@/types/chat';
import { FlowModuleTypeEnum } from '@/constants/flow';
import { ModuleDispatchProps } from '@/types/core/modules';
export type HttpRequestProps = ModuleDispatchProps<{
[HttpPropsEnum.url]: string;
[key: string]: any;
}>;
export type HttpResponse = {
[HttpPropsEnum.finish]: boolean;
[HttpPropsEnum.failed]?: boolean;
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
[key: string]: any;
};
export const dispatchHttpRequest = async (props: Record<string, any>): Promise<HttpResponse> => {
const {
moduleName,
variables,
inputs: { url, ...body }
} = props as HttpRequestProps;
const requestBody = {
variables,
...body
};
try {
const response = await fetchData({
url,
body: requestBody
});
return {
[HttpPropsEnum.finish]: true,
[TaskResponseKeyEnum.responseData]: {
moduleType: FlowModuleTypeEnum.httpRequest,
moduleName,
price: 0,
body: requestBody,
httpResult: response
},
...response
};
} catch (error) {
return {
[HttpPropsEnum.finish]: true,
[HttpPropsEnum.failed]: true,
[TaskResponseKeyEnum.responseData]: {
moduleType: FlowModuleTypeEnum.httpRequest,
moduleName,
price: 0,
body: requestBody,
httpResult: { error }
}
};
}
};
async function fetchData({
url,
body
}: {
url: string;
body: Record<string, any>;
}): Promise<Record<string, any>> {
const response = await fetch(url, {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify(body)
}).then((res) => res.json());
return response;
}