mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-28 09:03:53 +00:00
monorepo packages (#344)
This commit is contained in:
201
projects/app/src/service/events/generateQA.ts
Normal file
201
projects/app/src/service/events/generateQA.ts
Normal file
@@ -0,0 +1,201 @@
|
||||
import { TrainingData } from '@/service/mongo';
|
||||
import { pushQABill } from '@/service/common/bill/push';
|
||||
import { TrainingModeEnum } from '@/constants/plugin';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
import { sendInform } from '@/pages/api/user/inform/send';
|
||||
import { authBalanceByUid } from '../utils/auth';
|
||||
import { axiosConfig, getAIChatApi } from '../lib/openai';
|
||||
import { ChatCompletionRequestMessage } from 'openai';
|
||||
import { addLog } from '../utils/tools';
|
||||
import { splitText2Chunks } from '@/utils/file';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { Prompt_AgentQA } from '@/prompts/core/agent';
|
||||
import { pushDataToKb } from '@/pages/api/core/dataset/data/pushData';
|
||||
|
||||
const reduceQueue = () => {
|
||||
global.qaQueueLen = global.qaQueueLen > 0 ? global.qaQueueLen - 1 : 0;
|
||||
};
|
||||
|
||||
export async function generateQA(): Promise<any> {
|
||||
if (global.qaQueueLen >= global.systemEnv.qaMaxProcess) return;
|
||||
global.qaQueueLen++;
|
||||
|
||||
let trainingId = '';
|
||||
let userId = '';
|
||||
|
||||
try {
|
||||
const data = await TrainingData.findOneAndUpdate(
|
||||
{
|
||||
mode: TrainingModeEnum.qa,
|
||||
lockTime: { $lte: new Date(Date.now() - 4 * 60 * 1000) }
|
||||
},
|
||||
{
|
||||
lockTime: new Date()
|
||||
}
|
||||
).select({
|
||||
_id: 1,
|
||||
userId: 1,
|
||||
kbId: 1,
|
||||
prompt: 1,
|
||||
q: 1,
|
||||
source: 1,
|
||||
file_id: 1,
|
||||
billId: 1
|
||||
});
|
||||
|
||||
// task preemption
|
||||
if (!data) {
|
||||
reduceQueue();
|
||||
global.qaQueueLen <= 0 && console.log(`【QA】任务完成`);
|
||||
return;
|
||||
}
|
||||
|
||||
trainingId = data._id;
|
||||
userId = String(data.userId);
|
||||
const kbId = String(data.kbId);
|
||||
|
||||
await authBalanceByUid(userId);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
const chatAPI = getAIChatApi();
|
||||
|
||||
// request LLM to get QA
|
||||
const text = data.q;
|
||||
const messages: ChatCompletionRequestMessage[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: data.prompt
|
||||
? replaceVariable(data.prompt, { text })
|
||||
: replaceVariable(Prompt_AgentQA.prompt, {
|
||||
theme: Prompt_AgentQA.defaultTheme,
|
||||
text
|
||||
})
|
||||
}
|
||||
];
|
||||
|
||||
const { data: chatResponse } = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: global.qaModel.model,
|
||||
temperature: 0.01,
|
||||
messages,
|
||||
stream: false
|
||||
},
|
||||
{
|
||||
timeout: 480000,
|
||||
...axiosConfig()
|
||||
}
|
||||
);
|
||||
const answer = chatResponse.choices?.[0].message?.content;
|
||||
const totalTokens = chatResponse.usage?.total_tokens || 0;
|
||||
|
||||
const qaArr = formatSplitText(answer || ''); // 格式化后的QA对
|
||||
|
||||
// get vector and insert
|
||||
await pushDataToKb({
|
||||
kbId,
|
||||
data: qaArr.map((item) => ({
|
||||
...item,
|
||||
source: data.source,
|
||||
file_id: data.file_id
|
||||
})),
|
||||
userId,
|
||||
mode: TrainingModeEnum.index,
|
||||
billId: data.billId
|
||||
});
|
||||
|
||||
// delete data from training
|
||||
await TrainingData.findByIdAndDelete(data._id);
|
||||
|
||||
console.log(`split result length: `, qaArr.length);
|
||||
console.log('生成QA成功,time:', `${(Date.now() - startTime) / 1000}s`);
|
||||
|
||||
// 计费
|
||||
if (qaArr.length > 0) {
|
||||
pushQABill({
|
||||
userId: data.userId,
|
||||
totalTokens,
|
||||
billId: data.billId
|
||||
});
|
||||
} else {
|
||||
addLog.info(`QA result 0:`, { answer });
|
||||
}
|
||||
|
||||
reduceQueue();
|
||||
generateQA();
|
||||
} catch (err: any) {
|
||||
reduceQueue();
|
||||
// log
|
||||
if (err?.response) {
|
||||
console.log('openai error: 生成QA错误');
|
||||
console.log(err.response?.status, err.response?.statusText, err.response?.data);
|
||||
} else {
|
||||
addLog.error('生成 QA 错误', err);
|
||||
}
|
||||
|
||||
// message error or openai account error
|
||||
if (err?.message === 'invalid message format') {
|
||||
await TrainingData.findByIdAndRemove(trainingId);
|
||||
}
|
||||
|
||||
// 账号余额不足,删除任务
|
||||
if (userId && err === ERROR_ENUM.insufficientQuota) {
|
||||
sendInform({
|
||||
type: 'system',
|
||||
title: 'QA 任务中止',
|
||||
content:
|
||||
'由于账号余额不足,索引生成任务中止,重新充值后将会继续。暂停的任务将在 7 天后被删除。',
|
||||
userId
|
||||
});
|
||||
console.log('余额不足,暂停向量生成任务');
|
||||
await TrainingData.updateMany(
|
||||
{
|
||||
userId
|
||||
},
|
||||
{
|
||||
lockTime: new Date('2999/5/5')
|
||||
}
|
||||
);
|
||||
return generateQA();
|
||||
}
|
||||
|
||||
setTimeout(() => {
|
||||
generateQA();
|
||||
}, 1000);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 检查文本是否按格式返回
|
||||
*/
|
||||
function formatSplitText(text: string) {
|
||||
text = text.replace(/\\n/g, '\n'); // 将换行符替换为空格
|
||||
const regex = /Q\d+:(\s*)(.*)(\s*)A\d+:(\s*)([\s\S]*?)(?=Q|$)/g; // 匹配Q和A的正则表达式
|
||||
const matches = text.matchAll(regex); // 获取所有匹配到的结果
|
||||
|
||||
const result = []; // 存储最终的结果
|
||||
for (const match of matches) {
|
||||
const q = match[2];
|
||||
const a = match[5];
|
||||
if (q && a) {
|
||||
// 如果Q和A都存在,就将其添加到结果中
|
||||
result.push({
|
||||
q: `${q}\n${a.trim().replace(/\n\s*/g, '\n')}`,
|
||||
a: ''
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// empty result. direct split chunk
|
||||
if (result.length === 0) {
|
||||
const splitRes = splitText2Chunks({ text: text, maxLen: 500 });
|
||||
splitRes.chunks.forEach((item) => {
|
||||
result.push({
|
||||
q: item,
|
||||
a: ''
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
Reference in New Issue
Block a user