mirror of
https://github.com/labring/FastGPT.git
synced 2025-08-01 03:48:24 +00:00
monorepo packages (#344)
This commit is contained in:
172
projects/app/src/service/common/bill/push.ts
Normal file
172
projects/app/src/service/common/bill/push.ts
Normal file
@@ -0,0 +1,172 @@
|
||||
import { Bill, User, OutLink } from '@/service/mongo';
|
||||
import { BillSourceEnum } from '@/constants/user';
|
||||
import { getModel } from '@/service/utils/data';
|
||||
import { ChatHistoryItemResType } from '@/types/chat';
|
||||
import { formatPrice } from '@fastgpt/common/bill/index';
|
||||
import { addLog } from '@/service/utils/tools';
|
||||
import type { CreateBillType } from '@/types/common/bill';
|
||||
|
||||
async function createBill(data: CreateBillType) {
|
||||
try {
|
||||
await Promise.all([
|
||||
User.findByIdAndUpdate(data.userId, {
|
||||
$inc: { balance: -data.total }
|
||||
}),
|
||||
Bill.create(data)
|
||||
]);
|
||||
} catch (error) {
|
||||
addLog.error(`createBill error`, error);
|
||||
}
|
||||
}
|
||||
async function concatBill({
|
||||
billId,
|
||||
total,
|
||||
listIndex,
|
||||
tokens = 0,
|
||||
userId
|
||||
}: {
|
||||
billId?: string;
|
||||
total: number;
|
||||
listIndex?: number;
|
||||
tokens?: number;
|
||||
userId: string;
|
||||
}) {
|
||||
if (!billId) return;
|
||||
try {
|
||||
await Promise.all([
|
||||
Bill.findOneAndUpdate(
|
||||
{
|
||||
_id: billId,
|
||||
userId
|
||||
},
|
||||
{
|
||||
$inc: {
|
||||
total,
|
||||
...(listIndex !== undefined && {
|
||||
[`list.${listIndex}.amount`]: total,
|
||||
[`list.${listIndex}.tokenLen`]: tokens
|
||||
})
|
||||
}
|
||||
}
|
||||
),
|
||||
User.findByIdAndUpdate(userId, {
|
||||
$inc: { balance: -total }
|
||||
})
|
||||
]);
|
||||
} catch (error) {}
|
||||
}
|
||||
|
||||
export const pushChatBill = ({
|
||||
appName,
|
||||
appId,
|
||||
userId,
|
||||
source,
|
||||
response
|
||||
}: {
|
||||
appName: string;
|
||||
appId: string;
|
||||
userId: string;
|
||||
source: `${BillSourceEnum}`;
|
||||
response: ChatHistoryItemResType[];
|
||||
}) => {
|
||||
const total = response.reduce((sum, item) => sum + item.price, 0);
|
||||
|
||||
createBill({
|
||||
userId,
|
||||
appName,
|
||||
appId,
|
||||
total,
|
||||
source,
|
||||
list: response.map((item) => ({
|
||||
moduleName: item.moduleName,
|
||||
amount: item.price || 0,
|
||||
model: item.model,
|
||||
tokenLen: item.tokens
|
||||
}))
|
||||
});
|
||||
addLog.info(`finish completions`, {
|
||||
source,
|
||||
userId,
|
||||
price: formatPrice(total)
|
||||
});
|
||||
return { total };
|
||||
};
|
||||
|
||||
export const pushQABill = async ({
|
||||
userId,
|
||||
totalTokens,
|
||||
billId
|
||||
}: {
|
||||
userId: string;
|
||||
totalTokens: number;
|
||||
billId: string;
|
||||
}) => {
|
||||
addLog.info('splitData generate success', { totalTokens });
|
||||
|
||||
// 获取模型单价格, 都是用 gpt35 拆分
|
||||
const unitPrice = global.qaModel.price || 3;
|
||||
// 计算价格
|
||||
const total = unitPrice * totalTokens;
|
||||
|
||||
concatBill({
|
||||
billId,
|
||||
userId,
|
||||
total,
|
||||
tokens: totalTokens,
|
||||
listIndex: 1
|
||||
});
|
||||
|
||||
return { total };
|
||||
};
|
||||
|
||||
export const pushGenerateVectorBill = async ({
|
||||
billId,
|
||||
userId,
|
||||
tokenLen,
|
||||
model
|
||||
}: {
|
||||
billId?: string;
|
||||
userId: string;
|
||||
tokenLen: number;
|
||||
model: string;
|
||||
}) => {
|
||||
// 计算价格. 至少为1
|
||||
const vectorModel =
|
||||
global.vectorModels.find((item) => item.model === model) || global.vectorModels[0];
|
||||
const unitPrice = vectorModel.price || 0.2;
|
||||
let total = unitPrice * tokenLen;
|
||||
total = total > 1 ? total : 1;
|
||||
|
||||
// 插入 Bill 记录
|
||||
if (billId) {
|
||||
concatBill({
|
||||
userId,
|
||||
total,
|
||||
billId,
|
||||
tokens: tokenLen,
|
||||
listIndex: 0
|
||||
});
|
||||
} else {
|
||||
createBill({
|
||||
userId,
|
||||
appName: '索引生成',
|
||||
total,
|
||||
source: BillSourceEnum.fastgpt,
|
||||
list: [
|
||||
{
|
||||
moduleName: '索引生成',
|
||||
amount: total,
|
||||
model: vectorModel.model,
|
||||
tokenLen
|
||||
}
|
||||
]
|
||||
});
|
||||
}
|
||||
return { total };
|
||||
};
|
||||
|
||||
export const countModelPrice = ({ model, tokens }: { model: string; tokens: number }) => {
|
||||
const modelData = getModel(model);
|
||||
if (!modelData) return 0;
|
||||
return modelData.price * tokens;
|
||||
};
|
46
projects/app/src/service/common/bill/schema.ts
Normal file
46
projects/app/src/service/common/bill/schema.ts
Normal file
@@ -0,0 +1,46 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { BillSchema as BillType } from '@/types/common/bill';
|
||||
import { BillSourceMap } from '@/constants/user';
|
||||
|
||||
const BillSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
appName: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
appId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'model',
|
||||
required: false
|
||||
},
|
||||
time: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
total: {
|
||||
type: Number,
|
||||
required: true
|
||||
},
|
||||
source: {
|
||||
type: String,
|
||||
enum: Object.keys(BillSourceMap),
|
||||
required: true
|
||||
},
|
||||
list: {
|
||||
type: Array,
|
||||
default: []
|
||||
}
|
||||
});
|
||||
|
||||
try {
|
||||
BillSchema.index({ userId: 1 });
|
||||
BillSchema.index({ time: 1 }, { expireAfterSeconds: 90 * 24 * 60 * 60 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
||||
export const Bill: Model<BillType> = models['bill'] || model('bill', BillSchema);
|
24
projects/app/src/service/common/ipLimit/schema.ts
Normal file
24
projects/app/src/service/common/ipLimit/schema.ts
Normal file
@@ -0,0 +1,24 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import type { IpLimitSchemaType } from '@/types/common/ipLimit';
|
||||
|
||||
const IpLimitSchema = new Schema({
|
||||
eventId: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
ip: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
account: {
|
||||
type: Number,
|
||||
default: 0
|
||||
},
|
||||
lastMinute: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
}
|
||||
});
|
||||
|
||||
export const IpLimit: Model<IpLimitSchemaType> =
|
||||
models['ip_limit'] || model('ip_limit', IpLimitSchema);
|
39
projects/app/src/service/common/stream.ts
Normal file
39
projects/app/src/service/common/stream.ts
Normal file
@@ -0,0 +1,39 @@
|
||||
import type { NextApiResponse } from 'next';
|
||||
|
||||
export function responseWriteController({
|
||||
res,
|
||||
readStream
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
readStream: any;
|
||||
}) {
|
||||
res.on('drain', () => {
|
||||
readStream.resume();
|
||||
});
|
||||
|
||||
return (text: string) => {
|
||||
const writeResult = res.write(text);
|
||||
if (!writeResult) {
|
||||
readStream.pause();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
export function responseWrite({
|
||||
res,
|
||||
write,
|
||||
event,
|
||||
data
|
||||
}: {
|
||||
res?: NextApiResponse;
|
||||
write?: (text: string) => void;
|
||||
event?: string;
|
||||
data: string;
|
||||
}) {
|
||||
const Write = write || res?.write;
|
||||
|
||||
if (!Write) return;
|
||||
|
||||
event && Write(`event: ${event}\n`);
|
||||
Write(`data: ${data}\n\n`);
|
||||
}
|
68
projects/app/src/service/common/tiktoken.ts
Normal file
68
projects/app/src/service/common/tiktoken.ts
Normal file
@@ -0,0 +1,68 @@
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { ChatRoleEnum } from '@/constants/chat';
|
||||
import type { NextApiResponse } from 'next';
|
||||
import { countMessagesTokens, countPromptTokens } from '@/utils/common/tiktoken';
|
||||
import { adaptRole_Chat2Message } from '@/utils/common/adapt/message';
|
||||
|
||||
export type ChatCompletionResponseType = {
|
||||
streamResponse: any;
|
||||
responseMessages: ChatItemType[];
|
||||
responseText: string;
|
||||
totalTokens: number;
|
||||
};
|
||||
export type StreamResponseType = {
|
||||
chatResponse: any;
|
||||
messages: ChatItemType[];
|
||||
res: NextApiResponse;
|
||||
model: string;
|
||||
[key: string]: any;
|
||||
};
|
||||
|
||||
/* slice chat context by tokens */
|
||||
export function ChatContextFilter({
|
||||
messages = [],
|
||||
maxTokens
|
||||
}: {
|
||||
messages: ChatItemType[];
|
||||
maxTokens: number;
|
||||
}) {
|
||||
if (!Array.isArray(messages)) {
|
||||
return [];
|
||||
}
|
||||
const rawTextLen = messages.reduce((sum, item) => sum + item.value.length, 0);
|
||||
|
||||
// If the text length is less than half of the maximum token, no calculation is required
|
||||
if (rawTextLen < maxTokens * 0.5) {
|
||||
return messages;
|
||||
}
|
||||
|
||||
// filter startWith system prompt
|
||||
const chatStartIndex = messages.findIndex((item) => item.obj !== ChatRoleEnum.System);
|
||||
const systemPrompts: ChatItemType[] = messages.slice(0, chatStartIndex);
|
||||
const chatPrompts: ChatItemType[] = messages.slice(chatStartIndex);
|
||||
|
||||
// reduce token of systemPrompt
|
||||
maxTokens -= countMessagesTokens({
|
||||
messages: systemPrompts
|
||||
});
|
||||
|
||||
// 根据 tokens 截断内容
|
||||
const chats: ChatItemType[] = [];
|
||||
|
||||
// 从后往前截取对话内容
|
||||
for (let i = chatPrompts.length - 1; i >= 0; i--) {
|
||||
const item = chatPrompts[i];
|
||||
chats.unshift(item);
|
||||
|
||||
const tokens = countPromptTokens(item.value, adaptRole_Chat2Message(item.obj));
|
||||
maxTokens -= tokens;
|
||||
|
||||
/* 整体 tokens 超出范围, system必须保留 */
|
||||
if (maxTokens <= 0) {
|
||||
chats.shift();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return [...systemPrompts, ...chats];
|
||||
}
|
91
projects/app/src/service/errorCode.ts
Normal file
91
projects/app/src/service/errorCode.ts
Normal file
@@ -0,0 +1,91 @@
|
||||
export const ERROR_CODE: { [key: number]: string } = {
|
||||
400: '请求失败',
|
||||
401: '无权访问',
|
||||
403: '紧张访问',
|
||||
404: '请求不存在',
|
||||
405: '请求方法错误',
|
||||
406: '请求的格式错误',
|
||||
410: '资源已删除',
|
||||
422: '验证错误',
|
||||
500: '服务器发生错误',
|
||||
502: '网关错误',
|
||||
503: '服务器暂时过载或维护',
|
||||
504: '网关超时'
|
||||
};
|
||||
|
||||
export const TOKEN_ERROR_CODE: Record<number, string> = {
|
||||
403: '登录状态无效,请重新登录'
|
||||
};
|
||||
|
||||
export const openaiError: Record<string, string> = {
|
||||
context_length_exceeded: '内容超长了,请重置对话',
|
||||
Unauthorized: 'API-KEY 不合法',
|
||||
rate_limit_reached: 'API被限制,请稍后再试',
|
||||
'Bad Request': 'Bad Request~ 可能内容太多了',
|
||||
'Bad Gateway': '网关异常,请重试'
|
||||
};
|
||||
export const openaiAccountError: Record<string, string> = {
|
||||
insufficient_quota: 'API 余额不足',
|
||||
invalid_api_key: 'openai 账号异常',
|
||||
account_deactivated: '账号已停用',
|
||||
invalid_request_error: '无效请求'
|
||||
};
|
||||
export const proxyError: Record<string, boolean> = {
|
||||
ECONNABORTED: true,
|
||||
ECONNRESET: true
|
||||
};
|
||||
|
||||
export enum ERROR_ENUM {
|
||||
unAuthorization = 'unAuthorization',
|
||||
insufficientQuota = 'insufficientQuota',
|
||||
unAuthModel = 'unAuthModel',
|
||||
unAuthApiKey = 'unAuthApiKey',
|
||||
unAuthKb = 'unAuthKb',
|
||||
unAuthFile = 'unAuthFile'
|
||||
}
|
||||
export const ERROR_RESPONSE: Record<
|
||||
any,
|
||||
{
|
||||
code: number;
|
||||
statusText: string;
|
||||
message: string;
|
||||
data?: any;
|
||||
}
|
||||
> = {
|
||||
[ERROR_ENUM.unAuthorization]: {
|
||||
code: 403,
|
||||
statusText: ERROR_ENUM.unAuthorization,
|
||||
message: '凭证错误',
|
||||
data: null
|
||||
},
|
||||
[ERROR_ENUM.insufficientQuota]: {
|
||||
code: 510,
|
||||
statusText: ERROR_ENUM.insufficientQuota,
|
||||
message: '账号余额不足',
|
||||
data: null
|
||||
},
|
||||
[ERROR_ENUM.unAuthModel]: {
|
||||
code: 511,
|
||||
statusText: ERROR_ENUM.unAuthModel,
|
||||
message: '无权使用该模型',
|
||||
data: null
|
||||
},
|
||||
[ERROR_ENUM.unAuthKb]: {
|
||||
code: 512,
|
||||
statusText: ERROR_ENUM.unAuthKb,
|
||||
message: '无权使用该知识库',
|
||||
data: null
|
||||
},
|
||||
[ERROR_ENUM.unAuthFile]: {
|
||||
code: 513,
|
||||
statusText: ERROR_ENUM.unAuthFile,
|
||||
message: '无权阅读该文件',
|
||||
data: null
|
||||
},
|
||||
[ERROR_ENUM.unAuthApiKey]: {
|
||||
code: 514,
|
||||
statusText: ERROR_ENUM.unAuthApiKey,
|
||||
message: 'Api Key 不合法',
|
||||
data: null
|
||||
}
|
||||
};
|
201
projects/app/src/service/events/generateQA.ts
Normal file
201
projects/app/src/service/events/generateQA.ts
Normal file
@@ -0,0 +1,201 @@
|
||||
import { TrainingData } from '@/service/mongo';
|
||||
import { pushQABill } from '@/service/common/bill/push';
|
||||
import { TrainingModeEnum } from '@/constants/plugin';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
import { sendInform } from '@/pages/api/user/inform/send';
|
||||
import { authBalanceByUid } from '../utils/auth';
|
||||
import { axiosConfig, getAIChatApi } from '../lib/openai';
|
||||
import { ChatCompletionRequestMessage } from 'openai';
|
||||
import { addLog } from '../utils/tools';
|
||||
import { splitText2Chunks } from '@/utils/file';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { Prompt_AgentQA } from '@/prompts/core/agent';
|
||||
import { pushDataToKb } from '@/pages/api/core/dataset/data/pushData';
|
||||
|
||||
const reduceQueue = () => {
|
||||
global.qaQueueLen = global.qaQueueLen > 0 ? global.qaQueueLen - 1 : 0;
|
||||
};
|
||||
|
||||
export async function generateQA(): Promise<any> {
|
||||
if (global.qaQueueLen >= global.systemEnv.qaMaxProcess) return;
|
||||
global.qaQueueLen++;
|
||||
|
||||
let trainingId = '';
|
||||
let userId = '';
|
||||
|
||||
try {
|
||||
const data = await TrainingData.findOneAndUpdate(
|
||||
{
|
||||
mode: TrainingModeEnum.qa,
|
||||
lockTime: { $lte: new Date(Date.now() - 4 * 60 * 1000) }
|
||||
},
|
||||
{
|
||||
lockTime: new Date()
|
||||
}
|
||||
).select({
|
||||
_id: 1,
|
||||
userId: 1,
|
||||
kbId: 1,
|
||||
prompt: 1,
|
||||
q: 1,
|
||||
source: 1,
|
||||
file_id: 1,
|
||||
billId: 1
|
||||
});
|
||||
|
||||
// task preemption
|
||||
if (!data) {
|
||||
reduceQueue();
|
||||
global.qaQueueLen <= 0 && console.log(`【QA】任务完成`);
|
||||
return;
|
||||
}
|
||||
|
||||
trainingId = data._id;
|
||||
userId = String(data.userId);
|
||||
const kbId = String(data.kbId);
|
||||
|
||||
await authBalanceByUid(userId);
|
||||
|
||||
const startTime = Date.now();
|
||||
|
||||
const chatAPI = getAIChatApi();
|
||||
|
||||
// request LLM to get QA
|
||||
const text = data.q;
|
||||
const messages: ChatCompletionRequestMessage[] = [
|
||||
{
|
||||
role: 'user',
|
||||
content: data.prompt
|
||||
? replaceVariable(data.prompt, { text })
|
||||
: replaceVariable(Prompt_AgentQA.prompt, {
|
||||
theme: Prompt_AgentQA.defaultTheme,
|
||||
text
|
||||
})
|
||||
}
|
||||
];
|
||||
|
||||
const { data: chatResponse } = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: global.qaModel.model,
|
||||
temperature: 0.01,
|
||||
messages,
|
||||
stream: false
|
||||
},
|
||||
{
|
||||
timeout: 480000,
|
||||
...axiosConfig()
|
||||
}
|
||||
);
|
||||
const answer = chatResponse.choices?.[0].message?.content;
|
||||
const totalTokens = chatResponse.usage?.total_tokens || 0;
|
||||
|
||||
const qaArr = formatSplitText(answer || ''); // 格式化后的QA对
|
||||
|
||||
// get vector and insert
|
||||
await pushDataToKb({
|
||||
kbId,
|
||||
data: qaArr.map((item) => ({
|
||||
...item,
|
||||
source: data.source,
|
||||
file_id: data.file_id
|
||||
})),
|
||||
userId,
|
||||
mode: TrainingModeEnum.index,
|
||||
billId: data.billId
|
||||
});
|
||||
|
||||
// delete data from training
|
||||
await TrainingData.findByIdAndDelete(data._id);
|
||||
|
||||
console.log(`split result length: `, qaArr.length);
|
||||
console.log('生成QA成功,time:', `${(Date.now() - startTime) / 1000}s`);
|
||||
|
||||
// 计费
|
||||
if (qaArr.length > 0) {
|
||||
pushQABill({
|
||||
userId: data.userId,
|
||||
totalTokens,
|
||||
billId: data.billId
|
||||
});
|
||||
} else {
|
||||
addLog.info(`QA result 0:`, { answer });
|
||||
}
|
||||
|
||||
reduceQueue();
|
||||
generateQA();
|
||||
} catch (err: any) {
|
||||
reduceQueue();
|
||||
// log
|
||||
if (err?.response) {
|
||||
console.log('openai error: 生成QA错误');
|
||||
console.log(err.response?.status, err.response?.statusText, err.response?.data);
|
||||
} else {
|
||||
addLog.error('生成 QA 错误', err);
|
||||
}
|
||||
|
||||
// message error or openai account error
|
||||
if (err?.message === 'invalid message format') {
|
||||
await TrainingData.findByIdAndRemove(trainingId);
|
||||
}
|
||||
|
||||
// 账号余额不足,删除任务
|
||||
if (userId && err === ERROR_ENUM.insufficientQuota) {
|
||||
sendInform({
|
||||
type: 'system',
|
||||
title: 'QA 任务中止',
|
||||
content:
|
||||
'由于账号余额不足,索引生成任务中止,重新充值后将会继续。暂停的任务将在 7 天后被删除。',
|
||||
userId
|
||||
});
|
||||
console.log('余额不足,暂停向量生成任务');
|
||||
await TrainingData.updateMany(
|
||||
{
|
||||
userId
|
||||
},
|
||||
{
|
||||
lockTime: new Date('2999/5/5')
|
||||
}
|
||||
);
|
||||
return generateQA();
|
||||
}
|
||||
|
||||
setTimeout(() => {
|
||||
generateQA();
|
||||
}, 1000);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* 检查文本是否按格式返回
|
||||
*/
|
||||
function formatSplitText(text: string) {
|
||||
text = text.replace(/\\n/g, '\n'); // 将换行符替换为空格
|
||||
const regex = /Q\d+:(\s*)(.*)(\s*)A\d+:(\s*)([\s\S]*?)(?=Q|$)/g; // 匹配Q和A的正则表达式
|
||||
const matches = text.matchAll(regex); // 获取所有匹配到的结果
|
||||
|
||||
const result = []; // 存储最终的结果
|
||||
for (const match of matches) {
|
||||
const q = match[2];
|
||||
const a = match[5];
|
||||
if (q && a) {
|
||||
// 如果Q和A都存在,就将其添加到结果中
|
||||
result.push({
|
||||
q: `${q}\n${a.trim().replace(/\n\s*/g, '\n')}`,
|
||||
a: ''
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
// empty result. direct split chunk
|
||||
if (result.length === 0) {
|
||||
const splitRes = splitText2Chunks({ text: text, maxLen: 500 });
|
||||
splitRes.chunks.forEach((item) => {
|
||||
result.push({
|
||||
q: item,
|
||||
a: ''
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
153
projects/app/src/service/events/generateVector.ts
Normal file
153
projects/app/src/service/events/generateVector.ts
Normal file
@@ -0,0 +1,153 @@
|
||||
import { insertData2Dataset } from '@/service/pg';
|
||||
import { getVector } from '@/pages/api/openapi/plugin/vector';
|
||||
import { TrainingData } from '../models/trainingData';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
import { TrainingModeEnum } from '@/constants/plugin';
|
||||
import { sendInform } from '@/pages/api/user/inform/send';
|
||||
import { addLog } from '../utils/tools';
|
||||
|
||||
const reduceQueue = () => {
|
||||
global.vectorQueueLen = global.vectorQueueLen > 0 ? global.vectorQueueLen - 1 : 0;
|
||||
};
|
||||
|
||||
/* 索引生成队列。每导入一次,就是一个单独的线程 */
|
||||
export async function generateVector(): Promise<any> {
|
||||
if (global.vectorQueueLen >= global.systemEnv.vectorMaxProcess) return;
|
||||
global.vectorQueueLen++;
|
||||
|
||||
let trainingId = '';
|
||||
let userId = '';
|
||||
let dataItems: {
|
||||
q: string;
|
||||
a: string;
|
||||
}[] = [];
|
||||
|
||||
try {
|
||||
const data = await TrainingData.findOneAndUpdate(
|
||||
{
|
||||
mode: TrainingModeEnum.index,
|
||||
lockTime: { $lte: new Date(Date.now() - 1 * 60 * 1000) }
|
||||
},
|
||||
{
|
||||
lockTime: new Date()
|
||||
}
|
||||
).select({
|
||||
_id: 1,
|
||||
userId: 1,
|
||||
kbId: 1,
|
||||
q: 1,
|
||||
a: 1,
|
||||
source: 1,
|
||||
file_id: 1,
|
||||
vectorModel: 1,
|
||||
billId: 1
|
||||
});
|
||||
|
||||
// task preemption
|
||||
if (!data) {
|
||||
reduceQueue();
|
||||
global.vectorQueueLen <= 0 && console.log(`【索引】任务完成`);
|
||||
return;
|
||||
}
|
||||
|
||||
trainingId = data._id;
|
||||
userId = String(data.userId);
|
||||
const kbId = String(data.kbId);
|
||||
|
||||
dataItems = [
|
||||
{
|
||||
q: data.q.replace(/[\x00-\x08]/g, ' '),
|
||||
a: data.a.replace(/[\x00-\x08]/g, ' ')
|
||||
}
|
||||
];
|
||||
|
||||
// 生成词向量
|
||||
const { vectors } = await getVector({
|
||||
model: data.vectorModel,
|
||||
input: dataItems.map((item) => item.q),
|
||||
userId,
|
||||
billId: data.billId
|
||||
});
|
||||
|
||||
// 生成结果插入到 pg
|
||||
await insertData2Dataset({
|
||||
userId,
|
||||
kbId,
|
||||
data: vectors.map((vector, i) => ({
|
||||
q: dataItems[i].q,
|
||||
a: dataItems[i].a,
|
||||
source: data.source,
|
||||
file_id: data.file_id,
|
||||
vector
|
||||
}))
|
||||
});
|
||||
|
||||
// delete data from training
|
||||
await TrainingData.findByIdAndDelete(data._id);
|
||||
// console.log(`生成向量成功: ${data._id}`);
|
||||
|
||||
reduceQueue();
|
||||
generateVector();
|
||||
} catch (err: any) {
|
||||
reduceQueue();
|
||||
// log
|
||||
if (err?.response) {
|
||||
addLog.info('openai error: 生成向量错误', {
|
||||
status: err.response?.status,
|
||||
stateusText: err.response?.statusText,
|
||||
data: err.response?.data
|
||||
});
|
||||
} else {
|
||||
addLog.error('openai error: 生成向量错误', err);
|
||||
}
|
||||
|
||||
// message error or openai account error
|
||||
if (
|
||||
err?.message === 'invalid message format' ||
|
||||
err.response?.data?.error?.type === 'invalid_request_error'
|
||||
) {
|
||||
addLog.info('invalid message format', {
|
||||
dataItems
|
||||
});
|
||||
try {
|
||||
await TrainingData.findByIdAndUpdate(trainingId, {
|
||||
lockTime: new Date('2998/5/5')
|
||||
});
|
||||
} catch (error) {}
|
||||
return generateVector();
|
||||
}
|
||||
|
||||
// err vector data
|
||||
if (err?.code === 500) {
|
||||
await TrainingData.findByIdAndDelete(trainingId);
|
||||
return generateVector();
|
||||
}
|
||||
|
||||
// 账号余额不足,删除任务
|
||||
if (userId && err === ERROR_ENUM.insufficientQuota) {
|
||||
try {
|
||||
sendInform({
|
||||
type: 'system',
|
||||
title: '索引生成任务中止',
|
||||
content:
|
||||
'由于账号余额不足,索引生成任务中止,重新充值后将会继续。暂停的任务将在 7 天后被删除。',
|
||||
userId
|
||||
});
|
||||
console.log('余额不足,暂停向量生成任务');
|
||||
await TrainingData.updateMany(
|
||||
{
|
||||
userId
|
||||
},
|
||||
{
|
||||
lockTime: new Date('2999/5/5')
|
||||
}
|
||||
);
|
||||
} catch (error) {}
|
||||
return generateVector();
|
||||
}
|
||||
|
||||
setTimeout(() => {
|
||||
generateVector();
|
||||
}, 1000);
|
||||
}
|
||||
}
|
16
projects/app/src/service/events/sendInform.ts
Normal file
16
projects/app/src/service/events/sendInform.ts
Normal file
@@ -0,0 +1,16 @@
|
||||
export const startSendInform = async () => {
|
||||
if (global.sendInformQueue.length === 0 || global.sendInformQueueLen > 0) return;
|
||||
global.sendInformQueueLen++;
|
||||
|
||||
try {
|
||||
const fn = global.sendInformQueue[global.sendInformQueue.length - 1];
|
||||
await fn();
|
||||
global.sendInformQueue.pop();
|
||||
global.sendInformQueueLen--;
|
||||
|
||||
startSendInform();
|
||||
} catch (error) {
|
||||
global.sendInformQueueLen--;
|
||||
startSendInform();
|
||||
}
|
||||
};
|
126
projects/app/src/service/lib/gridfs.ts
Normal file
126
projects/app/src/service/lib/gridfs.ts
Normal file
@@ -0,0 +1,126 @@
|
||||
import mongoose, { Types } from 'mongoose';
|
||||
import fs from 'fs';
|
||||
import fsp from 'fs/promises';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
import type { GSFileInfoType } from '@/types/common/file';
|
||||
|
||||
enum BucketNameEnum {
|
||||
dataset = 'dataset'
|
||||
}
|
||||
|
||||
export class GridFSStorage {
|
||||
readonly type = 'gridfs';
|
||||
readonly bucket: `${BucketNameEnum}`;
|
||||
readonly uid: string;
|
||||
|
||||
constructor(bucket: `${BucketNameEnum}`, uid: string) {
|
||||
this.bucket = bucket;
|
||||
this.uid = String(uid);
|
||||
}
|
||||
Collection() {
|
||||
return mongoose.connection.db.collection(`${this.bucket}.files`);
|
||||
}
|
||||
GridFSBucket() {
|
||||
return new mongoose.mongo.GridFSBucket(mongoose.connection.db, {
|
||||
bucketName: this.bucket
|
||||
});
|
||||
}
|
||||
|
||||
async save({
|
||||
path,
|
||||
filename,
|
||||
metadata = {}
|
||||
}: {
|
||||
path: string;
|
||||
filename: string;
|
||||
metadata?: Record<string, any>;
|
||||
}) {
|
||||
if (!path) return Promise.reject(`filePath is empty`);
|
||||
if (!filename) return Promise.reject(`filename is empty`);
|
||||
|
||||
const stats = await fsp.stat(path);
|
||||
if (!stats.isFile()) return Promise.reject(`${path} is not a file`);
|
||||
|
||||
metadata.userId = this.uid;
|
||||
// create a gridfs bucket
|
||||
const bucket = this.GridFSBucket();
|
||||
|
||||
const stream = bucket.openUploadStream(filename, {
|
||||
metadata,
|
||||
contentType: metadata?.contentType
|
||||
});
|
||||
|
||||
// save to gridfs
|
||||
await new Promise((resolve, reject) => {
|
||||
fs.createReadStream(path)
|
||||
.pipe(stream as any)
|
||||
.on('finish', resolve)
|
||||
.on('error', reject);
|
||||
});
|
||||
|
||||
return String(stream.id);
|
||||
}
|
||||
async findAndAuthFile(id: string): Promise<GSFileInfoType> {
|
||||
if (!id) {
|
||||
return Promise.reject(`id is empty`);
|
||||
}
|
||||
|
||||
// create a gridfs bucket
|
||||
const bucket = this.GridFSBucket();
|
||||
|
||||
// check if file exists
|
||||
const files = await bucket.find({ _id: new Types.ObjectId(id) }).toArray();
|
||||
const file = files.shift();
|
||||
if (!file) {
|
||||
return Promise.reject(`file not found`);
|
||||
}
|
||||
|
||||
if (file.metadata?.userId !== this.uid) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthFile);
|
||||
}
|
||||
|
||||
return {
|
||||
id: String(file._id),
|
||||
filename: file.filename,
|
||||
contentType: file.metadata?.contentType,
|
||||
encoding: file.metadata?.encoding,
|
||||
uploadDate: file.uploadDate,
|
||||
size: file.length
|
||||
};
|
||||
}
|
||||
|
||||
async delete(id: string) {
|
||||
await this.findAndAuthFile(id);
|
||||
const bucket = this.GridFSBucket();
|
||||
|
||||
await bucket.delete(new Types.ObjectId(id));
|
||||
return true;
|
||||
}
|
||||
|
||||
async deleteFilesByKbId(kbId: string) {
|
||||
if (!kbId) return;
|
||||
const bucket = this.GridFSBucket();
|
||||
const files = await bucket
|
||||
.find({ ['metadata.kbId']: kbId, ['metadata.userId']: this.uid }, { projection: { _id: 1 } })
|
||||
.toArray();
|
||||
|
||||
return Promise.all(files.map((file) => this.delete(String(file._id))));
|
||||
}
|
||||
|
||||
async download(id: string) {
|
||||
await this.findAndAuthFile(id);
|
||||
|
||||
const bucket = this.GridFSBucket();
|
||||
|
||||
const stream = bucket.openDownloadStream(new Types.ObjectId(id));
|
||||
|
||||
const buf: Buffer = await new Promise((resolve, reject) => {
|
||||
const buffers: Buffer[] = [];
|
||||
stream.on('data', (data) => buffers.push(data));
|
||||
stream.on('error', reject);
|
||||
stream.on('end', () => resolve(Buffer.concat(buffers)));
|
||||
});
|
||||
|
||||
return buf;
|
||||
}
|
||||
}
|
28
projects/app/src/service/lib/openai.ts
Normal file
28
projects/app/src/service/lib/openai.ts
Normal file
@@ -0,0 +1,28 @@
|
||||
import { UserModelSchema } from '@/types/mongoSchema';
|
||||
import { Configuration, OpenAIApi } from 'openai';
|
||||
|
||||
export const openaiBaseUrl = process.env.OPENAI_BASE_URL || 'https://api.openai.com/v1';
|
||||
export const baseUrl = process.env.ONEAPI_URL || openaiBaseUrl;
|
||||
|
||||
export const systemAIChatKey = process.env.CHAT_API_KEY || '';
|
||||
|
||||
export const getAIChatApi = (props?: UserModelSchema['openaiAccount']) => {
|
||||
return new OpenAIApi(
|
||||
new Configuration({
|
||||
basePath: props?.baseUrl || baseUrl,
|
||||
apiKey: props?.key || systemAIChatKey
|
||||
})
|
||||
);
|
||||
};
|
||||
|
||||
/* openai axios config */
|
||||
export const axiosConfig = (props?: UserModelSchema['openaiAccount']) => {
|
||||
return {
|
||||
baseURL: props?.baseUrl || baseUrl, // 此处仅对非 npm 模块有效
|
||||
httpsAgent: global.httpsAgent,
|
||||
headers: {
|
||||
Authorization: `Bearer ${props?.key || systemAIChatKey}`,
|
||||
auth: process.env.OPENAI_BASE_URL_AUTH || ''
|
||||
}
|
||||
};
|
||||
};
|
70
projects/app/src/service/models/app.ts
Normal file
70
projects/app/src/service/models/app.ts
Normal file
@@ -0,0 +1,70 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { AppSchema as AppType } from '@/types/mongoSchema';
|
||||
|
||||
const AppSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
name: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
type: {
|
||||
type: String,
|
||||
default: 'advanced',
|
||||
enum: ['basic', 'advanced']
|
||||
},
|
||||
avatar: {
|
||||
type: String,
|
||||
default: '/icon/logo.svg'
|
||||
},
|
||||
intro: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
updateTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
share: {
|
||||
topNum: {
|
||||
type: Number,
|
||||
default: 0
|
||||
},
|
||||
isShare: {
|
||||
type: Boolean,
|
||||
default: false
|
||||
},
|
||||
isShareDetail: {
|
||||
// share model detail info. false: just show name and intro
|
||||
type: Boolean,
|
||||
default: false
|
||||
},
|
||||
intro: {
|
||||
type: String,
|
||||
default: '',
|
||||
maxlength: 150
|
||||
},
|
||||
collection: {
|
||||
type: Number,
|
||||
default: 0
|
||||
}
|
||||
},
|
||||
modules: {
|
||||
type: Array,
|
||||
default: []
|
||||
},
|
||||
// 弃
|
||||
chat: Object
|
||||
});
|
||||
|
||||
try {
|
||||
AppSchema.index({ updateTime: -1 });
|
||||
AppSchema.index({ 'share.collection': -1 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
||||
export const App: Model<AppType> = models['app'] || model('app', AppSchema);
|
82
projects/app/src/service/models/chat.ts
Normal file
82
projects/app/src/service/models/chat.ts
Normal file
@@ -0,0 +1,82 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { ChatSchema as ChatType } from '@/types/mongoSchema';
|
||||
import { ChatRoleMap, TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { ChatSourceMap } from '@/constants/chat';
|
||||
|
||||
const ChatSchema = new Schema({
|
||||
chatId: {
|
||||
type: String,
|
||||
require: true
|
||||
},
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
appId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'model',
|
||||
required: true
|
||||
},
|
||||
updateTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
title: {
|
||||
type: String,
|
||||
default: '历史记录'
|
||||
},
|
||||
customTitle: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
top: {
|
||||
type: Boolean
|
||||
},
|
||||
variables: {
|
||||
type: Object,
|
||||
default: {}
|
||||
},
|
||||
source: {
|
||||
type: String,
|
||||
enum: Object.keys(ChatSourceMap),
|
||||
required: true
|
||||
},
|
||||
shareId: {
|
||||
type: String
|
||||
},
|
||||
isInit: {
|
||||
type: Boolean,
|
||||
default: false
|
||||
},
|
||||
content: {
|
||||
type: [
|
||||
{
|
||||
obj: {
|
||||
type: String,
|
||||
required: true,
|
||||
enum: Object.keys(ChatRoleMap)
|
||||
},
|
||||
value: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
type: Array,
|
||||
default: []
|
||||
}
|
||||
}
|
||||
],
|
||||
default: []
|
||||
}
|
||||
});
|
||||
|
||||
try {
|
||||
ChatSchema.index({ userId: 1 });
|
||||
ChatSchema.index({ updateTime: -1 });
|
||||
ChatSchema.index({ appId: 1 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
||||
export const Chat: Model<ChatType> = models['chat'] || model('chat', ChatSchema);
|
67
projects/app/src/service/models/chatItem.ts
Normal file
67
projects/app/src/service/models/chatItem.ts
Normal file
@@ -0,0 +1,67 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { ChatItemSchema as ChatItemType } from '@/types/mongoSchema';
|
||||
import { ChatRoleMap, TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { customAlphabet } from 'nanoid';
|
||||
const nanoid = customAlphabet('abcdefghijklmnopqrstuvwxyz1234567890', 24);
|
||||
|
||||
const ChatItemSchema = new Schema({
|
||||
dataId: {
|
||||
type: String,
|
||||
require: true,
|
||||
default: () => nanoid()
|
||||
},
|
||||
chatId: {
|
||||
type: String,
|
||||
require: true
|
||||
},
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
appId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'model',
|
||||
required: true
|
||||
},
|
||||
time: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
obj: {
|
||||
type: String,
|
||||
required: true,
|
||||
enum: Object.keys(ChatRoleMap)
|
||||
},
|
||||
value: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
userFeedback: {
|
||||
type: String
|
||||
},
|
||||
adminFeedback: {
|
||||
type: {
|
||||
kbId: String,
|
||||
dataId: String,
|
||||
content: String
|
||||
}
|
||||
},
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
type: Array,
|
||||
default: []
|
||||
}
|
||||
});
|
||||
|
||||
try {
|
||||
ChatItemSchema.index({ time: -1 });
|
||||
ChatItemSchema.index({ userId: 1 });
|
||||
ChatItemSchema.index({ appId: 1 });
|
||||
ChatItemSchema.index({ chatId: 1 });
|
||||
ChatItemSchema.index({ userFeedback: 1 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
||||
export const ChatItem: Model<ChatItemType> =
|
||||
models['chatItem'] || model('chatItem', ChatItemSchema);
|
18
projects/app/src/service/models/collection.ts
Normal file
18
projects/app/src/service/models/collection.ts
Normal file
@@ -0,0 +1,18 @@
|
||||
import { Schema, model, models, Model as MongoModel } from 'mongoose';
|
||||
import { CollectionSchema as CollectionType } from '@/types/mongoSchema';
|
||||
|
||||
const CollectionSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
appId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'model',
|
||||
required: true
|
||||
}
|
||||
});
|
||||
|
||||
export const Collection: MongoModel<CollectionType> =
|
||||
models['collection'] || model('collection', CollectionSchema);
|
15
projects/app/src/service/models/image.ts
Normal file
15
projects/app/src/service/models/image.ts
Normal file
@@ -0,0 +1,15 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
|
||||
const ImageSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
binary: {
|
||||
type: Buffer
|
||||
}
|
||||
});
|
||||
|
||||
export const Image: Model<{ userId: string; binary: Buffer }> =
|
||||
models['image'] || model('image', ImageSchema);
|
40
projects/app/src/service/models/inform.ts
Normal file
40
projects/app/src/service/models/inform.ts
Normal file
@@ -0,0 +1,40 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { informSchema } from '@/types/mongoSchema';
|
||||
import { InformTypeMap } from '@/constants/user';
|
||||
|
||||
const InformSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
time: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
type: {
|
||||
type: String,
|
||||
enum: Object.keys(InformTypeMap)
|
||||
},
|
||||
title: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
content: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
read: {
|
||||
type: Boolean,
|
||||
default: false
|
||||
}
|
||||
});
|
||||
|
||||
try {
|
||||
InformSchema.index({ time: -1 });
|
||||
InformSchema.index({ userId: 1 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
||||
export const Inform: Model<informSchema> = models['inform'] || model('inform', InformSchema);
|
45
projects/app/src/service/models/kb.ts
Normal file
45
projects/app/src/service/models/kb.ts
Normal file
@@ -0,0 +1,45 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { kbSchema as SchemaType } from '@/types/mongoSchema';
|
||||
import { KbTypeMap } from '@/constants/dataset';
|
||||
|
||||
const kbSchema = new Schema({
|
||||
parentId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'kb',
|
||||
default: null
|
||||
},
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
updateTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
avatar: {
|
||||
type: String,
|
||||
default: '/icon/logo.svg'
|
||||
},
|
||||
name: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
vectorModel: {
|
||||
type: String,
|
||||
required: true,
|
||||
default: 'text-embedding-ada-002'
|
||||
},
|
||||
type: {
|
||||
type: String,
|
||||
enum: Object.keys(KbTypeMap),
|
||||
required: true,
|
||||
default: 'dataset'
|
||||
},
|
||||
tags: {
|
||||
type: [String],
|
||||
default: []
|
||||
}
|
||||
});
|
||||
|
||||
export const KB: Model<SchemaType> = models['kb'] || model('kb', kbSchema);
|
29
projects/app/src/service/models/pay.ts
Normal file
29
projects/app/src/service/models/pay.ts
Normal file
@@ -0,0 +1,29 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { PaySchema as PayType } from '@/types/mongoSchema';
|
||||
const PaySchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
createTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
price: {
|
||||
type: Number,
|
||||
required: true
|
||||
},
|
||||
orderId: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
status: {
|
||||
// 支付的状态
|
||||
type: String,
|
||||
default: 'NOTPAY',
|
||||
enum: ['SUCCESS', 'REFUND', 'NOTPAY', 'CLOSED']
|
||||
}
|
||||
});
|
||||
|
||||
export const Pay: Model<PayType> = models['pay'] || model('pay', PaySchema);
|
31
projects/app/src/service/models/promotionRecord.ts
Normal file
31
projects/app/src/service/models/promotionRecord.ts
Normal file
@@ -0,0 +1,31 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { PromotionRecordSchema as PromotionRecordType } from '@/types/mongoSchema';
|
||||
|
||||
const PromotionRecordSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
objUId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: false
|
||||
},
|
||||
createTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
type: {
|
||||
type: String,
|
||||
required: true,
|
||||
enum: ['pay', 'register']
|
||||
},
|
||||
amount: {
|
||||
type: Number,
|
||||
required: true
|
||||
}
|
||||
});
|
||||
|
||||
export const promotionRecord: Model<PromotionRecordType> =
|
||||
models['promotionRecord'] || model('promotionRecord', PromotionRecordSchema);
|
72
projects/app/src/service/models/trainingData.ts
Normal file
72
projects/app/src/service/models/trainingData.ts
Normal file
@@ -0,0 +1,72 @@
|
||||
/* 模型的知识库 */
|
||||
import { Schema, model, models, Model as MongoModel } from 'mongoose';
|
||||
import { TrainingDataSchema as TrainingDateType } from '@/types/mongoSchema';
|
||||
import { TrainingTypeMap } from '@/constants/plugin';
|
||||
|
||||
// pgList and vectorList, Only one of them will work
|
||||
const TrainingDataSchema = new Schema({
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
kbId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'kb',
|
||||
required: true
|
||||
},
|
||||
expireAt: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
lockTime: {
|
||||
type: Date,
|
||||
default: () => new Date('2000/1/1')
|
||||
},
|
||||
mode: {
|
||||
type: String,
|
||||
enum: Object.keys(TrainingTypeMap),
|
||||
required: true
|
||||
},
|
||||
vectorModel: {
|
||||
type: String,
|
||||
required: true,
|
||||
default: 'text-embedding-ada-002'
|
||||
},
|
||||
prompt: {
|
||||
// qa split prompt
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
q: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
a: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
source: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
file_id: {
|
||||
type: String,
|
||||
default: ''
|
||||
},
|
||||
billId: {
|
||||
type: String,
|
||||
default: ''
|
||||
}
|
||||
});
|
||||
|
||||
try {
|
||||
TrainingDataSchema.index({ lockTime: 1 });
|
||||
TrainingDataSchema.index({ userId: 1 });
|
||||
TrainingDataSchema.index({ expireAt: 1 }, { expireAfterSeconds: 7 * 24 * 60 });
|
||||
} catch (error) {
|
||||
console.log(error);
|
||||
}
|
||||
|
||||
export const TrainingData: MongoModel<TrainingDateType> =
|
||||
models['trainingData'] || model('trainingData', TrainingDataSchema);
|
59
projects/app/src/service/models/user.ts
Normal file
59
projects/app/src/service/models/user.ts
Normal file
@@ -0,0 +1,59 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { hashPassword } from '@/service/utils/tools';
|
||||
import { PRICE_SCALE } from '@fastgpt/common/bill/constants';
|
||||
import { UserModelSchema } from '@/types/mongoSchema';
|
||||
|
||||
const UserSchema = new Schema({
|
||||
username: {
|
||||
// 可以是手机/邮箱,新的验证都只用手机
|
||||
type: String,
|
||||
required: true,
|
||||
unique: true // 唯一
|
||||
},
|
||||
password: {
|
||||
type: String,
|
||||
required: true,
|
||||
set: (val: string) => hashPassword(val),
|
||||
get: (val: string) => hashPassword(val),
|
||||
select: false
|
||||
},
|
||||
createTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
avatar: {
|
||||
type: String,
|
||||
default: '/icon/human.png'
|
||||
},
|
||||
balance: {
|
||||
type: Number,
|
||||
default: 2 * PRICE_SCALE
|
||||
},
|
||||
inviterId: {
|
||||
// 谁邀请注册的
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user'
|
||||
},
|
||||
promotionRate: {
|
||||
type: Number,
|
||||
default: 15
|
||||
},
|
||||
limit: {
|
||||
exportKbTime: {
|
||||
// Every half hour
|
||||
type: Date
|
||||
}
|
||||
},
|
||||
openaiAccount: {
|
||||
type: {
|
||||
key: String,
|
||||
baseUrl: String
|
||||
}
|
||||
},
|
||||
timezone: {
|
||||
type: String,
|
||||
default: 'Asia/Shanghai'
|
||||
}
|
||||
});
|
||||
|
||||
export const User: Model<UserModelSchema> = models['user'] || model('user', UserSchema);
|
@@ -0,0 +1,172 @@
|
||||
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
|
||||
import { ChatContextFilter } from '@/service/common/tiktoken';
|
||||
import type { ChatHistoryItemResType, ChatItemType } from '@/types/chat';
|
||||
import { ChatRoleEnum, TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { getAIChatApi, axiosConfig } from '@/service/lib/openai';
|
||||
import type { ClassifyQuestionAgentItemType } from '@/types/app';
|
||||
import { SystemInputEnum } from '@/constants/app';
|
||||
import { SpecialInputKeyEnum } from '@/constants/flow';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { ModuleDispatchProps } from '@/types/core/modules';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { Prompt_CQJson } from '@/prompts/core/agent';
|
||||
import { defaultCQModel } from '@/pages/api/system/getInitData';
|
||||
|
||||
type Props = ModuleDispatchProps<{
|
||||
systemPrompt?: string;
|
||||
history?: ChatItemType[];
|
||||
[SystemInputEnum.userChatInput]: string;
|
||||
[SpecialInputKeyEnum.agents]: ClassifyQuestionAgentItemType[];
|
||||
}>;
|
||||
type CQResponse = {
|
||||
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
|
||||
[key: string]: any;
|
||||
};
|
||||
|
||||
const agentFunName = 'agent_user_question';
|
||||
|
||||
/* request openai chat */
|
||||
export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse> => {
|
||||
const {
|
||||
moduleName,
|
||||
userOpenaiAccount,
|
||||
inputs: { agents, userChatInput }
|
||||
} = props as Props;
|
||||
|
||||
if (!userChatInput) {
|
||||
return Promise.reject('Input is empty');
|
||||
}
|
||||
|
||||
const cqModel = global.cqModel || defaultCQModel;
|
||||
|
||||
const { arg, tokens } = await (async () => {
|
||||
if (cqModel.functionCall) {
|
||||
return functionCall(props);
|
||||
}
|
||||
return completions(props);
|
||||
})();
|
||||
|
||||
const result = agents.find((item) => item.key === arg?.type) || agents[0];
|
||||
|
||||
return {
|
||||
[result.key]: 1,
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
moduleType: FlowModuleTypeEnum.classifyQuestion,
|
||||
moduleName,
|
||||
price: userOpenaiAccount?.key ? 0 : cqModel.price * tokens,
|
||||
model: cqModel.name || '',
|
||||
tokens,
|
||||
cqList: agents,
|
||||
cqResult: result.value
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
async function functionCall({
|
||||
userOpenaiAccount,
|
||||
inputs: { agents, systemPrompt, history = [], userChatInput }
|
||||
}: Props) {
|
||||
const cqModel = global.cqModel;
|
||||
|
||||
const messages: ChatItemType[] = [
|
||||
...(systemPrompt
|
||||
? [
|
||||
{
|
||||
obj: ChatRoleEnum.System,
|
||||
value: systemPrompt
|
||||
}
|
||||
]
|
||||
: []),
|
||||
...history,
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: userChatInput
|
||||
}
|
||||
];
|
||||
const filterMessages = ChatContextFilter({
|
||||
messages,
|
||||
maxTokens: cqModel.maxToken
|
||||
});
|
||||
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
|
||||
|
||||
// function body
|
||||
const agentFunction = {
|
||||
name: agentFunName,
|
||||
description: '判断用户问题的类型属于哪方面,返回对应的字段',
|
||||
parameters: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
type: {
|
||||
type: 'string',
|
||||
description: agents.map((item) => `${item.value},返回:'${item.key}'`).join(';'),
|
||||
enum: agents.map((item) => item.key)
|
||||
}
|
||||
},
|
||||
required: ['type']
|
||||
}
|
||||
};
|
||||
const chatAPI = getAIChatApi(userOpenaiAccount);
|
||||
|
||||
const response = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: cqModel.model,
|
||||
temperature: 0,
|
||||
messages: [...adaptMessages],
|
||||
function_call: { name: agentFunName },
|
||||
functions: [agentFunction]
|
||||
},
|
||||
{
|
||||
...axiosConfig(userOpenaiAccount)
|
||||
}
|
||||
);
|
||||
|
||||
const arg = JSON.parse(response.data.choices?.[0]?.message?.function_call?.arguments || '');
|
||||
|
||||
return {
|
||||
arg,
|
||||
tokens: response.data.usage?.total_tokens || 0
|
||||
};
|
||||
}
|
||||
|
||||
async function completions({
|
||||
userOpenaiAccount,
|
||||
inputs: { agents, systemPrompt = '', history = [], userChatInput }
|
||||
}: Props) {
|
||||
const extractModel = global.extractModel;
|
||||
|
||||
const messages: ChatItemType[] = [
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: replaceVariable(extractModel.prompt || Prompt_CQJson, {
|
||||
systemPrompt,
|
||||
typeList: agents.map((item) => `ID: "${item.key}", 问题类型:${item.value}`).join('\n'),
|
||||
text: `${history.map((item) => `${item.obj}:${item.value}`).join('\n')}
|
||||
Human:${userChatInput}`
|
||||
})
|
||||
}
|
||||
];
|
||||
|
||||
const chatAPI = getAIChatApi(userOpenaiAccount);
|
||||
|
||||
const { data } = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: extractModel.model,
|
||||
temperature: 0.01,
|
||||
messages: adaptChat2GptMessages({ messages, reserveId: false }),
|
||||
stream: false
|
||||
},
|
||||
{
|
||||
timeout: 480000,
|
||||
...axiosConfig(userOpenaiAccount)
|
||||
}
|
||||
);
|
||||
const answer = data.choices?.[0].message?.content || '';
|
||||
const totalTokens = data.usage?.total_tokens || 0;
|
||||
|
||||
const id = agents.find((item) => answer.includes(item.key))?.key || '';
|
||||
|
||||
return {
|
||||
tokens: totalTokens,
|
||||
arg: { type: id }
|
||||
};
|
||||
}
|
227
projects/app/src/service/moduleDispatch/agent/extract.ts
Normal file
227
projects/app/src/service/moduleDispatch/agent/extract.ts
Normal file
@@ -0,0 +1,227 @@
|
||||
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
|
||||
import { ChatContextFilter } from '@/service/common/tiktoken';
|
||||
import type { ChatHistoryItemResType, ChatItemType } from '@/types/chat';
|
||||
import { ChatRoleEnum, TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { getAIChatApi, axiosConfig } from '@/service/lib/openai';
|
||||
import type { ContextExtractAgentItemType } from '@/types/app';
|
||||
import { ContextExtractEnum } from '@/constants/flow/flowField';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { ModuleDispatchProps } from '@/types/core/modules';
|
||||
import { Prompt_ExtractJson } from '@/prompts/core/agent';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { defaultExtractModel } from '@/pages/api/system/getInitData';
|
||||
|
||||
type Props = ModuleDispatchProps<{
|
||||
history?: ChatItemType[];
|
||||
[ContextExtractEnum.content]: string;
|
||||
[ContextExtractEnum.extractKeys]: ContextExtractAgentItemType[];
|
||||
[ContextExtractEnum.description]: string;
|
||||
}>;
|
||||
type Response = {
|
||||
[ContextExtractEnum.success]?: boolean;
|
||||
[ContextExtractEnum.failed]?: boolean;
|
||||
[ContextExtractEnum.fields]: string;
|
||||
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
|
||||
};
|
||||
|
||||
const agentFunName = 'agent_extract_data';
|
||||
|
||||
export async function dispatchContentExtract(props: Props): Promise<Response> {
|
||||
const {
|
||||
moduleName,
|
||||
userOpenaiAccount,
|
||||
inputs: { content, description, extractKeys }
|
||||
} = props;
|
||||
|
||||
if (!content) {
|
||||
return Promise.reject('Input is empty');
|
||||
}
|
||||
|
||||
const extractModel = global.extractModel || defaultExtractModel;
|
||||
|
||||
const { arg, tokens } = await (async () => {
|
||||
if (extractModel.functionCall) {
|
||||
return functionCall(props);
|
||||
}
|
||||
return completions(props);
|
||||
})();
|
||||
|
||||
// remove invalid key
|
||||
for (let key in arg) {
|
||||
if (!extractKeys.find((item) => item.key === key)) {
|
||||
delete arg[key];
|
||||
}
|
||||
}
|
||||
|
||||
// auth fields
|
||||
let success = !extractKeys.find((item) => !arg[item.key]);
|
||||
// auth empty value
|
||||
if (success) {
|
||||
for (const key in arg) {
|
||||
if (arg[key] === '') {
|
||||
success = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
[ContextExtractEnum.success]: success ? true : undefined,
|
||||
[ContextExtractEnum.failed]: success ? undefined : true,
|
||||
[ContextExtractEnum.fields]: JSON.stringify(arg),
|
||||
...arg,
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
moduleType: FlowModuleTypeEnum.contentExtract,
|
||||
moduleName,
|
||||
price: userOpenaiAccount?.key ? 0 : extractModel.price * tokens,
|
||||
model: extractModel.name || '',
|
||||
tokens,
|
||||
extractDescription: description,
|
||||
extractResult: arg
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
async function functionCall({
|
||||
userOpenaiAccount,
|
||||
inputs: { history = [], content, extractKeys, description }
|
||||
}: Props) {
|
||||
const extractModel = global.extractModel;
|
||||
|
||||
const messages: ChatItemType[] = [
|
||||
...history,
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: content
|
||||
}
|
||||
];
|
||||
const filterMessages = ChatContextFilter({
|
||||
messages,
|
||||
maxTokens: extractModel.maxToken
|
||||
});
|
||||
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
|
||||
|
||||
const properties: Record<
|
||||
string,
|
||||
{
|
||||
type: string;
|
||||
description: string;
|
||||
}
|
||||
> = {};
|
||||
extractKeys.forEach((item) => {
|
||||
properties[item.key] = {
|
||||
type: 'string',
|
||||
description: item.desc
|
||||
};
|
||||
});
|
||||
|
||||
// function body
|
||||
const agentFunction = {
|
||||
name: agentFunName,
|
||||
description: `${description}\n如果内容不存在,返回空字符串。`,
|
||||
parameters: {
|
||||
type: 'object',
|
||||
properties,
|
||||
required: extractKeys.filter((item) => item.required).map((item) => item.key)
|
||||
}
|
||||
};
|
||||
|
||||
const chatAPI = getAIChatApi(userOpenaiAccount);
|
||||
|
||||
const response = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: extractModel.model,
|
||||
temperature: 0,
|
||||
messages: [...adaptMessages],
|
||||
function_call: { name: agentFunName },
|
||||
functions: [agentFunction]
|
||||
},
|
||||
{
|
||||
...axiosConfig(userOpenaiAccount)
|
||||
}
|
||||
);
|
||||
|
||||
const arg: Record<string, any> = (() => {
|
||||
try {
|
||||
return JSON.parse(response.data.choices?.[0]?.message?.function_call?.arguments || '{}');
|
||||
} catch (error) {
|
||||
return {};
|
||||
}
|
||||
})();
|
||||
|
||||
const tokens = response.data.usage?.total_tokens || 0;
|
||||
return {
|
||||
tokens,
|
||||
arg
|
||||
};
|
||||
}
|
||||
|
||||
async function completions({
|
||||
userOpenaiAccount,
|
||||
inputs: { history = [], content, extractKeys, description }
|
||||
}: Props) {
|
||||
const extractModel = global.extractModel;
|
||||
|
||||
const messages: ChatItemType[] = [
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: replaceVariable(extractModel.prompt || Prompt_ExtractJson, {
|
||||
description,
|
||||
json: extractKeys
|
||||
.map(
|
||||
(item) =>
|
||||
`key="${item.key}",描述="${item.desc}",required="${
|
||||
item.required ? 'true' : 'false'
|
||||
}"`
|
||||
)
|
||||
.join('\n'),
|
||||
text: `${history.map((item) => `${item.obj}:${item.value}`).join('\n')}
|
||||
Human: ${content}`
|
||||
})
|
||||
}
|
||||
];
|
||||
|
||||
const chatAPI = getAIChatApi(userOpenaiAccount);
|
||||
|
||||
const { data } = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: extractModel.model,
|
||||
temperature: 0.01,
|
||||
messages: adaptChat2GptMessages({ messages, reserveId: false }),
|
||||
stream: false
|
||||
},
|
||||
{
|
||||
timeout: 480000,
|
||||
...axiosConfig(userOpenaiAccount)
|
||||
}
|
||||
);
|
||||
const answer = data.choices?.[0].message?.content || '';
|
||||
const totalTokens = data.usage?.total_tokens || 0;
|
||||
|
||||
// parse response
|
||||
const start = answer.indexOf('{');
|
||||
const end = answer.lastIndexOf('}');
|
||||
|
||||
if (start === -1 || end === -1)
|
||||
return {
|
||||
tokens: totalTokens,
|
||||
arg: {}
|
||||
};
|
||||
|
||||
const jsonStr = answer
|
||||
.substring(start, end + 1)
|
||||
.replace(/(\\n|\\)/g, '')
|
||||
.replace(/ /g, '');
|
||||
|
||||
try {
|
||||
return {
|
||||
tokens: totalTokens,
|
||||
arg: JSON.parse(jsonStr) as Record<string, any>
|
||||
};
|
||||
} catch (error) {
|
||||
return {
|
||||
tokens: totalTokens,
|
||||
arg: {}
|
||||
};
|
||||
}
|
||||
}
|
405
projects/app/src/service/moduleDispatch/chat/oneapi.ts
Normal file
405
projects/app/src/service/moduleDispatch/chat/oneapi.ts
Normal file
@@ -0,0 +1,405 @@
|
||||
import type { NextApiResponse } from 'next';
|
||||
import { ChatContextFilter } from '@/service/common/tiktoken';
|
||||
import type { ChatItemType, QuoteItemType } from '@/types/chat';
|
||||
import type { ChatHistoryItemResType } from '@/types/chat';
|
||||
import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
|
||||
import { SSEParseData, parseStreamChunk } from '@/utils/sse';
|
||||
import { textAdaptGptResponse } from '@/utils/adapt';
|
||||
import { getAIChatApi, axiosConfig } from '@/service/lib/openai';
|
||||
import { TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { getChatModel } from '@/service/utils/data';
|
||||
import { countModelPrice } from '@/service/common/bill/push';
|
||||
import { ChatModelItemType } from '@/types/model';
|
||||
import { textCensor } from '@/api/service/plugins';
|
||||
import { ChatCompletionRequestMessageRoleEnum } from 'openai';
|
||||
import { AppModuleItemType } from '@/types/app';
|
||||
import { countMessagesTokens, sliceMessagesTB } from '@/utils/common/tiktoken';
|
||||
import { adaptChat2GptMessages } from '@/utils/common/adapt/message';
|
||||
import { defaultQuotePrompt, defaultQuoteTemplate } from '@/prompts/core/AIChat';
|
||||
import type { AIChatProps } from '@/types/core/aiChat';
|
||||
import { replaceVariable } from '@/utils/common/tools/text';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { ModuleDispatchProps } from '@/types/core/modules';
|
||||
import { Readable } from 'stream';
|
||||
import { responseWrite, responseWriteController } from '@/service/common/stream';
|
||||
import { addLog } from '@/service/utils/tools';
|
||||
|
||||
export type ChatProps = ModuleDispatchProps<
|
||||
AIChatProps & {
|
||||
userChatInput: string;
|
||||
history?: ChatItemType[];
|
||||
quoteQA?: QuoteItemType[];
|
||||
limitPrompt?: string;
|
||||
}
|
||||
>;
|
||||
export type ChatResponse = {
|
||||
[TaskResponseKeyEnum.answerText]: string;
|
||||
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
|
||||
finish: boolean;
|
||||
};
|
||||
|
||||
/* request openai chat */
|
||||
export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResponse> => {
|
||||
let {
|
||||
res,
|
||||
moduleName,
|
||||
stream = false,
|
||||
detail = false,
|
||||
userOpenaiAccount,
|
||||
outputs,
|
||||
inputs: {
|
||||
model = global.chatModels[0]?.model,
|
||||
temperature = 0,
|
||||
maxToken = 4000,
|
||||
history = [],
|
||||
quoteQA = [],
|
||||
userChatInput,
|
||||
systemPrompt = '',
|
||||
limitPrompt,
|
||||
quoteTemplate,
|
||||
quotePrompt
|
||||
}
|
||||
} = props;
|
||||
if (!userChatInput) {
|
||||
return Promise.reject('Question is empty');
|
||||
}
|
||||
|
||||
// temperature adapt
|
||||
const modelConstantsData = getChatModel(model);
|
||||
|
||||
if (!modelConstantsData) {
|
||||
return Promise.reject('The chat model is undefined, you need to select a chat model.');
|
||||
}
|
||||
|
||||
const { filterQuoteQA, quoteText } = filterQuote({
|
||||
quoteQA,
|
||||
model: modelConstantsData,
|
||||
quoteTemplate
|
||||
});
|
||||
|
||||
if (modelConstantsData.censor) {
|
||||
await textCensor({
|
||||
text: `${systemPrompt}
|
||||
${quoteText}
|
||||
${userChatInput}
|
||||
`
|
||||
});
|
||||
}
|
||||
|
||||
const { messages, filterMessages } = getChatMessages({
|
||||
model: modelConstantsData,
|
||||
history,
|
||||
quoteText,
|
||||
quotePrompt,
|
||||
userChatInput,
|
||||
systemPrompt,
|
||||
limitPrompt
|
||||
});
|
||||
const { max_tokens } = getMaxTokens({
|
||||
model: modelConstantsData,
|
||||
maxToken,
|
||||
filterMessages
|
||||
});
|
||||
// console.log(messages);
|
||||
|
||||
// FastGPT temperature range: 1~10
|
||||
temperature = +(modelConstantsData.maxTemperature * (temperature / 10)).toFixed(2);
|
||||
temperature = Math.max(temperature, 0.01);
|
||||
const chatAPI = getAIChatApi(userOpenaiAccount);
|
||||
|
||||
const response = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model,
|
||||
temperature,
|
||||
max_tokens,
|
||||
messages: [
|
||||
...(modelConstantsData.defaultSystem
|
||||
? [
|
||||
{
|
||||
role: ChatCompletionRequestMessageRoleEnum.System,
|
||||
content: modelConstantsData.defaultSystem
|
||||
}
|
||||
]
|
||||
: []),
|
||||
...messages
|
||||
],
|
||||
stream
|
||||
},
|
||||
{
|
||||
timeout: 480000,
|
||||
responseType: stream ? 'stream' : 'json',
|
||||
...axiosConfig(userOpenaiAccount)
|
||||
}
|
||||
);
|
||||
|
||||
const { answerText, totalTokens, completeMessages } = await (async () => {
|
||||
if (stream) {
|
||||
// sse response
|
||||
const { answer } = await streamResponse({
|
||||
res,
|
||||
detail,
|
||||
response
|
||||
});
|
||||
// count tokens
|
||||
const completeMessages = filterMessages.concat({
|
||||
obj: ChatRoleEnum.AI,
|
||||
value: answer
|
||||
});
|
||||
|
||||
const totalTokens = countMessagesTokens({
|
||||
messages: completeMessages
|
||||
});
|
||||
|
||||
targetResponse({ res, detail, outputs });
|
||||
|
||||
return {
|
||||
answerText: answer,
|
||||
totalTokens,
|
||||
completeMessages
|
||||
};
|
||||
} else {
|
||||
const answer = response.data.choices?.[0].message?.content || '';
|
||||
const totalTokens = response.data.usage?.total_tokens || 0;
|
||||
|
||||
const completeMessages = filterMessages.concat({
|
||||
obj: ChatRoleEnum.AI,
|
||||
value: answer
|
||||
});
|
||||
|
||||
return {
|
||||
answerText: answer,
|
||||
totalTokens,
|
||||
completeMessages
|
||||
};
|
||||
}
|
||||
})();
|
||||
|
||||
return {
|
||||
[TaskResponseKeyEnum.answerText]: answerText,
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
moduleType: FlowModuleTypeEnum.chatNode,
|
||||
moduleName,
|
||||
price: userOpenaiAccount?.key ? 0 : countModelPrice({ model, tokens: totalTokens }),
|
||||
model: modelConstantsData.name,
|
||||
tokens: totalTokens,
|
||||
question: userChatInput,
|
||||
maxToken: max_tokens,
|
||||
quoteList: filterQuoteQA,
|
||||
historyPreview: getHistoryPreview(completeMessages)
|
||||
},
|
||||
finish: true
|
||||
};
|
||||
};
|
||||
|
||||
function filterQuote({
|
||||
quoteQA = [],
|
||||
model,
|
||||
quoteTemplate
|
||||
}: {
|
||||
quoteQA: ChatProps['inputs']['quoteQA'];
|
||||
model: ChatModelItemType;
|
||||
quoteTemplate?: string;
|
||||
}) {
|
||||
const sliceResult = sliceMessagesTB({
|
||||
maxTokens: model.quoteMaxToken,
|
||||
messages: quoteQA.map((item, index) => ({
|
||||
obj: ChatRoleEnum.System,
|
||||
value: replaceVariable(quoteTemplate || defaultQuoteTemplate, {
|
||||
...item,
|
||||
index: `${index + 1}`
|
||||
})
|
||||
}))
|
||||
});
|
||||
|
||||
// slice filterSearch
|
||||
const filterQuoteQA = quoteQA.slice(0, sliceResult.length);
|
||||
|
||||
const quoteText =
|
||||
filterQuoteQA.length > 0
|
||||
? `${filterQuoteQA
|
||||
.map((item, index) =>
|
||||
replaceVariable(quoteTemplate || defaultQuoteTemplate, {
|
||||
...item,
|
||||
index: `${index + 1}`
|
||||
})
|
||||
)
|
||||
.join('\n')}`
|
||||
: '';
|
||||
|
||||
return {
|
||||
filterQuoteQA,
|
||||
quoteText
|
||||
};
|
||||
}
|
||||
function getChatMessages({
|
||||
quotePrompt,
|
||||
quoteText,
|
||||
history = [],
|
||||
systemPrompt,
|
||||
limitPrompt,
|
||||
userChatInput,
|
||||
model
|
||||
}: {
|
||||
quotePrompt?: string;
|
||||
quoteText: string;
|
||||
history: ChatProps['inputs']['history'];
|
||||
systemPrompt: string;
|
||||
limitPrompt?: string;
|
||||
userChatInput: string;
|
||||
model: ChatModelItemType;
|
||||
}) {
|
||||
const question = quoteText
|
||||
? replaceVariable(quotePrompt || defaultQuotePrompt, {
|
||||
quote: quoteText,
|
||||
question: userChatInput
|
||||
})
|
||||
: userChatInput;
|
||||
|
||||
const messages: ChatItemType[] = [
|
||||
...(systemPrompt
|
||||
? [
|
||||
{
|
||||
obj: ChatRoleEnum.System,
|
||||
value: systemPrompt
|
||||
}
|
||||
]
|
||||
: []),
|
||||
...history,
|
||||
...(limitPrompt
|
||||
? [
|
||||
{
|
||||
obj: ChatRoleEnum.System,
|
||||
value: limitPrompt
|
||||
}
|
||||
]
|
||||
: []),
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: question
|
||||
}
|
||||
];
|
||||
|
||||
const filterMessages = ChatContextFilter({
|
||||
messages,
|
||||
maxTokens: Math.ceil(model.contextMaxToken - 300) // filter token. not response maxToken
|
||||
});
|
||||
|
||||
const adaptMessages = adaptChat2GptMessages({ messages: filterMessages, reserveId: false });
|
||||
|
||||
return {
|
||||
messages: adaptMessages,
|
||||
filterMessages
|
||||
};
|
||||
}
|
||||
function getMaxTokens({
|
||||
maxToken,
|
||||
model,
|
||||
filterMessages = []
|
||||
}: {
|
||||
maxToken: number;
|
||||
model: ChatModelItemType;
|
||||
filterMessages: ChatProps['inputs']['history'];
|
||||
}) {
|
||||
const tokensLimit = model.contextMaxToken;
|
||||
/* count response max token */
|
||||
|
||||
const promptsToken = countMessagesTokens({
|
||||
messages: filterMessages
|
||||
});
|
||||
maxToken = maxToken + promptsToken > tokensLimit ? tokensLimit - promptsToken : maxToken;
|
||||
|
||||
return {
|
||||
max_tokens: maxToken
|
||||
};
|
||||
}
|
||||
|
||||
function targetResponse({
|
||||
res,
|
||||
outputs,
|
||||
detail
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
outputs: AppModuleItemType['outputs'];
|
||||
detail: boolean;
|
||||
}) {
|
||||
const targets =
|
||||
outputs.find((output) => output.key === TaskResponseKeyEnum.answerText)?.targets || [];
|
||||
|
||||
if (targets.length === 0) return;
|
||||
responseWrite({
|
||||
res,
|
||||
event: detail ? sseResponseEventEnum.answer : undefined,
|
||||
data: textAdaptGptResponse({
|
||||
text: '\n'
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
async function streamResponse({
|
||||
res,
|
||||
detail,
|
||||
response
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
detail: boolean;
|
||||
response: any;
|
||||
}) {
|
||||
return new Promise<{ answer: string }>((resolve, reject) => {
|
||||
const stream = response.data as Readable;
|
||||
let answer = '';
|
||||
const parseData = new SSEParseData();
|
||||
|
||||
const write = responseWriteController({
|
||||
res,
|
||||
readStream: stream
|
||||
});
|
||||
|
||||
stream.on('data', (data) => {
|
||||
if (res.closed) {
|
||||
stream.destroy();
|
||||
return resolve({ answer });
|
||||
}
|
||||
|
||||
const parse = parseStreamChunk(data);
|
||||
parse.forEach((item) => {
|
||||
const { data } = parseData.parse(item);
|
||||
if (!data || data === '[DONE]') return;
|
||||
|
||||
const content: string = data?.choices?.[0]?.delta?.content || '';
|
||||
if (data.error) {
|
||||
addLog.error(`SSE response`, data.error);
|
||||
} else {
|
||||
answer += content;
|
||||
|
||||
responseWrite({
|
||||
write,
|
||||
event: detail ? sseResponseEventEnum.answer : undefined,
|
||||
data: textAdaptGptResponse({
|
||||
text: content
|
||||
})
|
||||
});
|
||||
}
|
||||
});
|
||||
});
|
||||
stream.on('end', () => {
|
||||
resolve({ answer });
|
||||
});
|
||||
stream.on('close', () => {
|
||||
resolve({ answer });
|
||||
});
|
||||
stream.on('error', (err) => {
|
||||
reject(err);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
function getHistoryPreview(completeMessages: ChatItemType[]) {
|
||||
return completeMessages.map((item, i) => {
|
||||
if (item.obj === ChatRoleEnum.System) return item;
|
||||
if (i >= completeMessages.length - 2) return item;
|
||||
return {
|
||||
...item,
|
||||
value: item.value.length > 15 ? `${item.value.slice(0, 15)}...` : item.value
|
||||
};
|
||||
});
|
||||
}
|
8
projects/app/src/service/moduleDispatch/index.ts
Normal file
8
projects/app/src/service/moduleDispatch/index.ts
Normal file
@@ -0,0 +1,8 @@
|
||||
export * from './init/history';
|
||||
export * from './init/userChatInput';
|
||||
export * from './chat/oneapi';
|
||||
export * from './kb/search';
|
||||
export * from './tools/answer';
|
||||
export * from './tools/http';
|
||||
export * from './agent/classifyQuestion';
|
||||
export * from './agent/extract';
|
18
projects/app/src/service/moduleDispatch/init/history.tsx
Normal file
18
projects/app/src/service/moduleDispatch/init/history.tsx
Normal file
@@ -0,0 +1,18 @@
|
||||
import { SystemInputEnum } from '@/constants/app';
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import type { ModuleDispatchProps } from '@/types/core/modules';
|
||||
|
||||
export type HistoryProps = ModuleDispatchProps<{
|
||||
maxContext: number;
|
||||
[SystemInputEnum.history]: ChatItemType[];
|
||||
}>;
|
||||
|
||||
export const dispatchHistory = (props: Record<string, any>) => {
|
||||
const {
|
||||
inputs: { maxContext = 5, history = [] }
|
||||
} = props as HistoryProps;
|
||||
|
||||
return {
|
||||
history: maxContext > 0 ? history.slice(-maxContext) : []
|
||||
};
|
||||
};
|
@@ -0,0 +1,15 @@
|
||||
import { SystemInputEnum } from '@/constants/app';
|
||||
import type { ModuleDispatchProps } from '@/types/core/modules';
|
||||
|
||||
export type UserChatInputProps = ModuleDispatchProps<{
|
||||
[SystemInputEnum.userChatInput]: string;
|
||||
}>;
|
||||
|
||||
export const dispatchChatInput = (props: Record<string, any>) => {
|
||||
const {
|
||||
inputs: { userChatInput }
|
||||
} = props as UserChatInputProps;
|
||||
return {
|
||||
userChatInput
|
||||
};
|
||||
};
|
74
projects/app/src/service/moduleDispatch/kb/search.ts
Normal file
74
projects/app/src/service/moduleDispatch/kb/search.ts
Normal file
@@ -0,0 +1,74 @@
|
||||
import { PgClient } from '@/service/pg';
|
||||
import type { ChatHistoryItemResType } from '@/types/chat';
|
||||
import { TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { getVector } from '@/pages/api/openapi/plugin/vector';
|
||||
import { countModelPrice } from '@/service/common/bill/push';
|
||||
import type { SelectedDatasetType } from '@/types/core/dataset';
|
||||
import type { QuoteItemType } from '@/types/chat';
|
||||
import { PgDatasetTableName } from '@/constants/plugin';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { ModuleDispatchProps } from '@/types/core/modules';
|
||||
|
||||
type KBSearchProps = ModuleDispatchProps<{
|
||||
kbList: SelectedDatasetType;
|
||||
similarity: number;
|
||||
limit: number;
|
||||
userChatInput: string;
|
||||
}>;
|
||||
export type KBSearchResponse = {
|
||||
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
|
||||
isEmpty?: boolean;
|
||||
unEmpty?: boolean;
|
||||
quoteQA: QuoteItemType[];
|
||||
};
|
||||
|
||||
export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSearchResponse> {
|
||||
const {
|
||||
moduleName,
|
||||
inputs: { kbList = [], similarity = 0.4, limit = 5, userChatInput }
|
||||
} = props as KBSearchProps;
|
||||
|
||||
if (kbList.length === 0) {
|
||||
return Promise.reject("You didn't choose the knowledge base");
|
||||
}
|
||||
|
||||
if (!userChatInput) {
|
||||
return Promise.reject('Your input is empty');
|
||||
}
|
||||
|
||||
// get vector
|
||||
const vectorModel = kbList[0]?.vectorModel || global.vectorModels[0];
|
||||
const { vectors, tokenLen } = await getVector({
|
||||
model: vectorModel.model,
|
||||
input: [userChatInput]
|
||||
});
|
||||
|
||||
// search kb
|
||||
const res: any = await PgClient.query(
|
||||
`BEGIN;
|
||||
SET LOCAL ivfflat.probes = ${global.systemEnv.pgIvfflatProbe || 10};
|
||||
select kb_id,id,q,a,source,file_id from ${PgDatasetTableName} where kb_id IN (${kbList
|
||||
.map((item) => `'${item.kbId}'`)
|
||||
.join(',')}) AND vector <#> '[${vectors[0]}]' < -${similarity} order by vector <#> '[${
|
||||
vectors[0]
|
||||
}]' limit ${limit};
|
||||
COMMIT;`
|
||||
);
|
||||
|
||||
const searchRes: QuoteItemType[] = res?.[2]?.rows || [];
|
||||
|
||||
return {
|
||||
isEmpty: searchRes.length === 0 ? true : undefined,
|
||||
unEmpty: searchRes.length > 0 ? true : undefined,
|
||||
quoteQA: searchRes,
|
||||
responseData: {
|
||||
moduleType: FlowModuleTypeEnum.kbSearchNode,
|
||||
moduleName,
|
||||
price: countModelPrice({ model: vectorModel.model, tokens: tokenLen }),
|
||||
model: vectorModel.name,
|
||||
tokens: tokenLen,
|
||||
similarity,
|
||||
limit
|
||||
}
|
||||
};
|
||||
}
|
36
projects/app/src/service/moduleDispatch/tools/answer.ts
Normal file
36
projects/app/src/service/moduleDispatch/tools/answer.ts
Normal file
@@ -0,0 +1,36 @@
|
||||
import { sseResponseEventEnum, TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { sseResponse } from '@/service/utils/tools';
|
||||
import { textAdaptGptResponse } from '@/utils/adapt';
|
||||
import type { ModuleDispatchProps } from '@/types/core/modules';
|
||||
|
||||
export type AnswerProps = ModuleDispatchProps<{
|
||||
text: string;
|
||||
}>;
|
||||
export type AnswerResponse = {
|
||||
[TaskResponseKeyEnum.answerText]: string;
|
||||
finish: boolean;
|
||||
};
|
||||
|
||||
export const dispatchAnswer = (props: Record<string, any>): AnswerResponse => {
|
||||
const {
|
||||
res,
|
||||
detail,
|
||||
stream,
|
||||
inputs: { text = '' }
|
||||
} = props as AnswerProps;
|
||||
|
||||
if (stream) {
|
||||
sseResponse({
|
||||
res,
|
||||
event: detail ? sseResponseEventEnum.answer : undefined,
|
||||
data: textAdaptGptResponse({
|
||||
text: text.replace(/\\n/g, '\n')
|
||||
})
|
||||
});
|
||||
}
|
||||
|
||||
return {
|
||||
[TaskResponseKeyEnum.answerText]: text,
|
||||
finish: true
|
||||
};
|
||||
};
|
78
projects/app/src/service/moduleDispatch/tools/http.ts
Normal file
78
projects/app/src/service/moduleDispatch/tools/http.ts
Normal file
@@ -0,0 +1,78 @@
|
||||
import { TaskResponseKeyEnum } from '@/constants/chat';
|
||||
import { HttpPropsEnum } from '@/constants/flow/flowField';
|
||||
import { ChatHistoryItemResType } from '@/types/chat';
|
||||
import { FlowModuleTypeEnum } from '@/constants/flow';
|
||||
import { ModuleDispatchProps } from '@/types/core/modules';
|
||||
|
||||
export type HttpRequestProps = ModuleDispatchProps<{
|
||||
[HttpPropsEnum.url]: string;
|
||||
[key: string]: any;
|
||||
}>;
|
||||
export type HttpResponse = {
|
||||
[HttpPropsEnum.finish]: boolean;
|
||||
[HttpPropsEnum.failed]?: boolean;
|
||||
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
|
||||
[key: string]: any;
|
||||
};
|
||||
|
||||
export const dispatchHttpRequest = async (props: Record<string, any>): Promise<HttpResponse> => {
|
||||
const {
|
||||
moduleName,
|
||||
variables,
|
||||
inputs: { url, ...body }
|
||||
} = props as HttpRequestProps;
|
||||
|
||||
const requestBody = {
|
||||
variables,
|
||||
...body
|
||||
};
|
||||
|
||||
try {
|
||||
const response = await fetchData({
|
||||
url,
|
||||
body: requestBody
|
||||
});
|
||||
|
||||
return {
|
||||
[HttpPropsEnum.finish]: true,
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
moduleType: FlowModuleTypeEnum.httpRequest,
|
||||
moduleName,
|
||||
price: 0,
|
||||
body: requestBody,
|
||||
httpResult: response
|
||||
},
|
||||
...response
|
||||
};
|
||||
} catch (error) {
|
||||
return {
|
||||
[HttpPropsEnum.finish]: true,
|
||||
[HttpPropsEnum.failed]: true,
|
||||
[TaskResponseKeyEnum.responseData]: {
|
||||
moduleType: FlowModuleTypeEnum.httpRequest,
|
||||
moduleName,
|
||||
price: 0,
|
||||
body: requestBody,
|
||||
httpResult: { error }
|
||||
}
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
async function fetchData({
|
||||
url,
|
||||
body
|
||||
}: {
|
||||
url: string;
|
||||
body: Record<string, any>;
|
||||
}): Promise<Record<string, any>> {
|
||||
const response = await fetch(url, {
|
||||
method: 'POST',
|
||||
headers: {
|
||||
'Content-Type': 'application/json'
|
||||
},
|
||||
body: JSON.stringify(body)
|
||||
}).then((res) => res.json());
|
||||
|
||||
return response;
|
||||
}
|
143
projects/app/src/service/mongo.ts
Normal file
143
projects/app/src/service/mongo.ts
Normal file
@@ -0,0 +1,143 @@
|
||||
import mongoose from 'mongoose';
|
||||
import tunnel from 'tunnel';
|
||||
import { startQueue } from './utils/tools';
|
||||
import { getInitConfig } from '@/pages/api/system/getInitData';
|
||||
import { User } from './models/user';
|
||||
import { PRICE_SCALE } from '@fastgpt/common/bill/constants';
|
||||
import { initPg } from './pg';
|
||||
import { createHashPassword } from '@/utils/tools';
|
||||
import { createLogger, format, transports } from 'winston';
|
||||
import 'winston-mongodb';
|
||||
import { getTikTokenEnc } from '@/utils/common/tiktoken';
|
||||
|
||||
/**
|
||||
* connect MongoDB and init data
|
||||
*/
|
||||
export async function connectToDatabase(): Promise<void> {
|
||||
if (global.mongodb) {
|
||||
return;
|
||||
}
|
||||
global.mongodb = 'connecting';
|
||||
|
||||
// init global data
|
||||
global.qaQueueLen = 0;
|
||||
global.vectorQueueLen = 0;
|
||||
global.sendInformQueue = [];
|
||||
global.sendInformQueueLen = 0;
|
||||
// proxy obj
|
||||
if (process.env.AXIOS_PROXY_HOST && process.env.AXIOS_PROXY_PORT) {
|
||||
global.httpsAgent = tunnel.httpsOverHttp({
|
||||
proxy: {
|
||||
host: process.env.AXIOS_PROXY_HOST,
|
||||
port: +process.env.AXIOS_PROXY_PORT
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
// logger
|
||||
initLogger();
|
||||
|
||||
// init function
|
||||
getInitConfig();
|
||||
// init tikToken
|
||||
getTikTokenEnc();
|
||||
|
||||
try {
|
||||
mongoose.set('strictQuery', true);
|
||||
global.mongodb = await mongoose.connect(process.env.MONGODB_URI as string, {
|
||||
bufferCommands: true,
|
||||
maxConnecting: Number(process.env.DB_MAX_LINK || 5),
|
||||
maxPoolSize: Number(process.env.DB_MAX_LINK || 5),
|
||||
minPoolSize: 2
|
||||
});
|
||||
|
||||
await initRootUser();
|
||||
initPg();
|
||||
console.log('mongo connected');
|
||||
} catch (error) {
|
||||
console.log('error->', 'mongo connect error');
|
||||
global.mongodb = null;
|
||||
}
|
||||
|
||||
// init function
|
||||
startQueue();
|
||||
}
|
||||
|
||||
function initLogger() {
|
||||
global.logger = createLogger({
|
||||
transports: [
|
||||
new transports.MongoDB({
|
||||
db: process.env.MONGODB_URI as string,
|
||||
collection: 'server_logs',
|
||||
options: {
|
||||
useUnifiedTopology: true
|
||||
},
|
||||
cappedSize: 500000000,
|
||||
tryReconnect: true,
|
||||
metaKey: 'meta',
|
||||
format: format.combine(format.timestamp(), format.json())
|
||||
}),
|
||||
new transports.Console({
|
||||
format: format.combine(
|
||||
format.timestamp({ format: 'YYYY-MM-DD HH:mm:ss' }),
|
||||
format.printf((info) => {
|
||||
if (info.level === 'error') {
|
||||
console.log(info.meta);
|
||||
return `[${info.level.toLocaleUpperCase()}]: ${[info.timestamp]}: ${info.message}`;
|
||||
}
|
||||
return `[${info.level.toLocaleUpperCase()}]: ${[info.timestamp]}: ${info.message}${
|
||||
info.meta ? `: ${JSON.stringify(info.meta)}` : ''
|
||||
}`;
|
||||
})
|
||||
)
|
||||
})
|
||||
]
|
||||
});
|
||||
}
|
||||
async function initRootUser() {
|
||||
try {
|
||||
const rootUser = await User.findOne({
|
||||
username: 'root'
|
||||
});
|
||||
const psw = process.env.DEFAULT_ROOT_PSW || '123456';
|
||||
|
||||
if (rootUser) {
|
||||
await User.findOneAndUpdate(
|
||||
{ username: 'root' },
|
||||
{
|
||||
password: createHashPassword(psw),
|
||||
balance: 999999 * PRICE_SCALE
|
||||
}
|
||||
);
|
||||
} else {
|
||||
await User.create({
|
||||
username: 'root',
|
||||
password: createHashPassword(psw),
|
||||
balance: 999999 * PRICE_SCALE
|
||||
});
|
||||
}
|
||||
|
||||
console.log(`root user init:`, {
|
||||
username: 'root',
|
||||
password: psw
|
||||
});
|
||||
} catch (error) {
|
||||
console.log('init root user error', error);
|
||||
}
|
||||
}
|
||||
|
||||
export * from './models/chat';
|
||||
export * from './models/chatItem';
|
||||
export * from './models/app';
|
||||
export * from './models/user';
|
||||
export * from './common/bill/schema';
|
||||
export * from './models/pay';
|
||||
export * from './models/trainingData';
|
||||
export * from './models/promotionRecord';
|
||||
export * from './models/collection';
|
||||
export * from './models/kb';
|
||||
export * from './models/inform';
|
||||
export * from './models/image';
|
||||
|
||||
export * from './support/outLink/schema';
|
||||
export * from './support/openapi/schema';
|
213
projects/app/src/service/pg.ts
Normal file
213
projects/app/src/service/pg.ts
Normal file
@@ -0,0 +1,213 @@
|
||||
import { Pool } from 'pg';
|
||||
import type { QueryResultRow } from 'pg';
|
||||
import { PgDatasetTableName } from '@/constants/plugin';
|
||||
import { addLog } from './utils/tools';
|
||||
import type { DatasetDataItemType } from '@/types/core/dataset/data';
|
||||
|
||||
export const connectPg = async (): Promise<Pool> => {
|
||||
if (global.pgClient) {
|
||||
return global.pgClient;
|
||||
}
|
||||
|
||||
global.pgClient = new Pool({
|
||||
connectionString: process.env.PG_URL,
|
||||
max: Number(process.env.DB_MAX_LINK || 5),
|
||||
keepAlive: true,
|
||||
idleTimeoutMillis: 30000,
|
||||
connectionTimeoutMillis: 5000
|
||||
});
|
||||
|
||||
global.pgClient.on('error', (err) => {
|
||||
console.log(err);
|
||||
global.pgClient = null;
|
||||
connectPg();
|
||||
});
|
||||
|
||||
try {
|
||||
await global.pgClient.connect();
|
||||
console.log('pg connected');
|
||||
return global.pgClient;
|
||||
} catch (error) {
|
||||
global.pgClient = null;
|
||||
return connectPg();
|
||||
}
|
||||
};
|
||||
|
||||
type WhereProps = (string | [string, string | number])[];
|
||||
type GetProps = {
|
||||
fields?: string[];
|
||||
where?: WhereProps;
|
||||
order?: { field: string; mode: 'DESC' | 'ASC' | string }[];
|
||||
limit?: number;
|
||||
offset?: number;
|
||||
};
|
||||
|
||||
type DeleteProps = {
|
||||
where: WhereProps;
|
||||
};
|
||||
|
||||
type ValuesProps = { key: string; value?: string | number }[];
|
||||
type UpdateProps = {
|
||||
values: ValuesProps;
|
||||
where: WhereProps;
|
||||
};
|
||||
type InsertProps = {
|
||||
values: ValuesProps[];
|
||||
};
|
||||
|
||||
class Pg {
|
||||
private getWhereStr(where?: WhereProps) {
|
||||
return where
|
||||
? `WHERE ${where
|
||||
.map((item) => {
|
||||
if (typeof item === 'string') {
|
||||
return item;
|
||||
}
|
||||
const val = typeof item[1] === 'number' ? item[1] : `'${String(item[1])}'`;
|
||||
return `${item[0]}=${val}`;
|
||||
})
|
||||
.join(' ')}`
|
||||
: '';
|
||||
}
|
||||
private getUpdateValStr(values: ValuesProps) {
|
||||
return values
|
||||
.map((item) => {
|
||||
const val =
|
||||
typeof item.value === 'number'
|
||||
? item.value
|
||||
: `'${String(item.value).replace(/\'/g, '"')}'`;
|
||||
|
||||
return `${item.key}=${val}`;
|
||||
})
|
||||
.join(',');
|
||||
}
|
||||
private getInsertValStr(values: ValuesProps[]) {
|
||||
return values
|
||||
.map(
|
||||
(items) =>
|
||||
`(${items
|
||||
.map((item) =>
|
||||
typeof item.value === 'number'
|
||||
? item.value
|
||||
: `'${String(item.value).replace(/\'/g, '"')}'`
|
||||
)
|
||||
.join(',')})`
|
||||
)
|
||||
.join(',');
|
||||
}
|
||||
async select<T extends QueryResultRow = any>(table: string, props: GetProps) {
|
||||
const sql = `SELECT ${
|
||||
!props.fields || props.fields?.length === 0 ? '*' : props.fields?.join(',')
|
||||
}
|
||||
FROM ${table}
|
||||
${this.getWhereStr(props.where)}
|
||||
${
|
||||
props.order
|
||||
? `ORDER BY ${props.order.map((item) => `${item.field} ${item.mode}`).join(',')}`
|
||||
: ''
|
||||
}
|
||||
LIMIT ${props.limit || 10} OFFSET ${props.offset || 0}
|
||||
`;
|
||||
|
||||
const pg = await connectPg();
|
||||
return pg.query<T>(sql);
|
||||
}
|
||||
async count(table: string, props: GetProps) {
|
||||
const sql = `SELECT COUNT(${props?.fields?.[0] || '*'})
|
||||
FROM ${table}
|
||||
${this.getWhereStr(props.where)}
|
||||
`;
|
||||
const pg = await connectPg();
|
||||
return pg.query(sql).then((res) => Number(res.rows[0]?.count || 0));
|
||||
}
|
||||
async delete(table: string, props: DeleteProps) {
|
||||
const sql = `DELETE FROM ${table} ${this.getWhereStr(props.where)}`;
|
||||
const pg = await connectPg();
|
||||
return pg.query(sql);
|
||||
}
|
||||
async update(table: string, props: UpdateProps) {
|
||||
if (props.values.length === 0) {
|
||||
return {
|
||||
rowCount: 0
|
||||
};
|
||||
}
|
||||
|
||||
const sql = `UPDATE ${table} SET ${this.getUpdateValStr(props.values)} ${this.getWhereStr(
|
||||
props.where
|
||||
)}`;
|
||||
const pg = await connectPg();
|
||||
return pg.query(sql);
|
||||
}
|
||||
async insert(table: string, props: InsertProps) {
|
||||
if (props.values.length === 0) {
|
||||
return {
|
||||
rowCount: 0
|
||||
};
|
||||
}
|
||||
|
||||
const fields = props.values[0].map((item) => item.key).join(',');
|
||||
const sql = `INSERT INTO ${table} (${fields}) VALUES ${this.getInsertValStr(
|
||||
props.values
|
||||
)} RETURNING id`;
|
||||
const pg = await connectPg();
|
||||
return pg.query(sql);
|
||||
}
|
||||
async query<T extends QueryResultRow = any>(sql: string) {
|
||||
const pg = await connectPg();
|
||||
return pg.query<T>(sql);
|
||||
}
|
||||
}
|
||||
|
||||
export const PgClient = new Pg();
|
||||
|
||||
/**
|
||||
* data insert dataset
|
||||
*/
|
||||
export const insertData2Dataset = ({
|
||||
userId,
|
||||
kbId,
|
||||
data
|
||||
}: {
|
||||
userId: string;
|
||||
kbId: string;
|
||||
data: (DatasetDataItemType & {
|
||||
vector: number[];
|
||||
})[];
|
||||
}) => {
|
||||
return PgClient.insert(PgDatasetTableName, {
|
||||
values: data.map((item) => [
|
||||
{ key: 'user_id', value: userId },
|
||||
{ key: 'kb_id', value: kbId },
|
||||
{ key: 'source', value: item.source?.slice(0, 60)?.trim() || '' },
|
||||
{ key: 'file_id', value: item.file_id || '' },
|
||||
{ key: 'q', value: item.q.replace(/'/g, '"') },
|
||||
{ key: 'a', value: item.a.replace(/'/g, '"') },
|
||||
{ key: 'vector', value: `[${item.vector}]` }
|
||||
])
|
||||
});
|
||||
};
|
||||
|
||||
export async function initPg() {
|
||||
try {
|
||||
await connectPg();
|
||||
await PgClient.query(`
|
||||
CREATE EXTENSION IF NOT EXISTS vector;
|
||||
CREATE TABLE IF NOT EXISTS ${PgDatasetTableName} (
|
||||
id BIGSERIAL PRIMARY KEY,
|
||||
vector VECTOR(1536) NOT NULL,
|
||||
user_id VARCHAR(50) NOT NULL,
|
||||
kb_id VARCHAR(50),
|
||||
source VARCHAR(100),
|
||||
file_id VARCHAR(100),
|
||||
q TEXT NOT NULL,
|
||||
a TEXT
|
||||
);
|
||||
CREATE INDEX IF NOT EXISTS modelData_userId_index ON ${PgDatasetTableName} USING HASH (user_id);
|
||||
CREATE INDEX IF NOT EXISTS modelData_kbId_index ON ${PgDatasetTableName} USING HASH (kb_id);
|
||||
CREATE INDEX IF NOT EXISTS idx_model_data_md5_q_a_user_id_kb_id ON ${PgDatasetTableName} (md5(q), md5(a), user_id, kb_id);
|
||||
`);
|
||||
console.log('init pg successful');
|
||||
} catch (error) {
|
||||
addLog.error('init pg error', error);
|
||||
}
|
||||
}
|
104
projects/app/src/service/response.ts
Normal file
104
projects/app/src/service/response.ts
Normal file
@@ -0,0 +1,104 @@
|
||||
import { sseResponseEventEnum } from '@/constants/chat';
|
||||
import { NextApiResponse } from 'next';
|
||||
import {
|
||||
openaiError,
|
||||
openaiAccountError,
|
||||
proxyError,
|
||||
ERROR_RESPONSE,
|
||||
ERROR_ENUM
|
||||
} from './errorCode';
|
||||
import { clearCookie, sseResponse, addLog } from './utils/tools';
|
||||
|
||||
export interface ResponseType<T = any> {
|
||||
code: number;
|
||||
message: string;
|
||||
data: T;
|
||||
}
|
||||
|
||||
export const jsonRes = <T = any>(
|
||||
res: NextApiResponse,
|
||||
props?: {
|
||||
code?: number;
|
||||
message?: string;
|
||||
data?: T;
|
||||
error?: any;
|
||||
}
|
||||
) => {
|
||||
const { code = 200, message = '', data = null, error } = props || {};
|
||||
|
||||
const errResponseKey = typeof error === 'string' ? error : error?.message;
|
||||
// Specified error
|
||||
if (ERROR_RESPONSE[errResponseKey]) {
|
||||
// login is expired
|
||||
if (errResponseKey === ERROR_ENUM.unAuthorization) {
|
||||
clearCookie(res);
|
||||
}
|
||||
|
||||
return res.json(ERROR_RESPONSE[errResponseKey]);
|
||||
}
|
||||
|
||||
// another error
|
||||
let msg = '';
|
||||
if ((code < 200 || code >= 400) && !message) {
|
||||
msg = error?.response?.statusText || error?.message || '请求错误';
|
||||
if (typeof error === 'string') {
|
||||
msg = error;
|
||||
} else if (proxyError[error?.code]) {
|
||||
msg = '网络连接异常';
|
||||
} else if (error?.response?.data?.error?.message) {
|
||||
msg = error?.response?.data?.error?.message;
|
||||
} else if (openaiAccountError[error?.response?.data?.error?.code]) {
|
||||
msg = openaiAccountError[error?.response?.data?.error?.code];
|
||||
} else if (openaiError[error?.response?.statusText]) {
|
||||
msg = openaiError[error.response.statusText];
|
||||
}
|
||||
|
||||
addLog.error(`response error: ${msg}`, error);
|
||||
}
|
||||
|
||||
res.status(code).json({
|
||||
code,
|
||||
statusText: '',
|
||||
message: message || msg,
|
||||
data: data !== undefined ? data : null
|
||||
});
|
||||
};
|
||||
|
||||
export const sseErrRes = (res: NextApiResponse, error: any) => {
|
||||
const errResponseKey = typeof error === 'string' ? error : error?.message;
|
||||
|
||||
// Specified error
|
||||
if (ERROR_RESPONSE[errResponseKey]) {
|
||||
// login is expired
|
||||
if (errResponseKey === ERROR_ENUM.unAuthorization) {
|
||||
clearCookie(res);
|
||||
}
|
||||
|
||||
return sseResponse({
|
||||
res,
|
||||
event: sseResponseEventEnum.error,
|
||||
data: JSON.stringify(ERROR_RESPONSE[errResponseKey])
|
||||
});
|
||||
}
|
||||
|
||||
let msg = error?.response?.statusText || error?.message || '请求错误';
|
||||
if (typeof error === 'string') {
|
||||
msg = error;
|
||||
} else if (proxyError[error?.code]) {
|
||||
msg = '网络连接异常';
|
||||
} else if (error?.response?.data?.error?.message) {
|
||||
msg = error?.response?.data?.error?.message;
|
||||
} else if (openaiAccountError[error?.response?.data?.error?.code]) {
|
||||
msg = openaiAccountError[error?.response?.data?.error?.code];
|
||||
} else if (openaiError[error?.response?.statusText]) {
|
||||
msg = openaiError[error.response.statusText];
|
||||
}
|
||||
|
||||
addLog.error(`sse error: ${msg}`, error);
|
||||
|
||||
sseResponse({
|
||||
res,
|
||||
event: sseResponseEventEnum.error,
|
||||
data: JSON.stringify({ message: msg })
|
||||
});
|
||||
};
|
38
projects/app/src/service/support/openapi/auth.ts
Normal file
38
projects/app/src/service/support/openapi/auth.ts
Normal file
@@ -0,0 +1,38 @@
|
||||
import { ERROR_ENUM } from '@/service/errorCode';
|
||||
import { updateApiKeyUsedTime } from './index';
|
||||
import { OpenApi } from './schema';
|
||||
|
||||
export async function authOpenApiKey({ apikey }: { apikey: string }) {
|
||||
if (!apikey) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthApiKey);
|
||||
}
|
||||
|
||||
try {
|
||||
const openApi = await OpenApi.findOne({ apiKey: apikey });
|
||||
if (!openApi) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthApiKey);
|
||||
}
|
||||
const userId = String(openApi.userId);
|
||||
|
||||
// auth limit
|
||||
if (global.feConfigs?.isPlus) {
|
||||
if (openApi?.limit?.expiredTime && openApi.limit.expiredTime.getTime() < Date.now()) {
|
||||
return Promise.reject(`Key ${openApi.apiKey} is expired`);
|
||||
}
|
||||
|
||||
if (
|
||||
openApi?.limit?.credit &&
|
||||
openApi.limit.credit > -1 &&
|
||||
openApi.usage > openApi.limit.credit
|
||||
) {
|
||||
return Promise.reject(`Key ${openApi.apiKey} is over usage`);
|
||||
}
|
||||
}
|
||||
|
||||
updateApiKeyUsedTime(openApi._id);
|
||||
|
||||
return { apikey, userId, appId: openApi.appId };
|
||||
} catch (error) {
|
||||
return Promise.reject(error);
|
||||
}
|
||||
}
|
18
projects/app/src/service/support/openapi/index.ts
Normal file
18
projects/app/src/service/support/openapi/index.ts
Normal file
@@ -0,0 +1,18 @@
|
||||
import { OpenApi } from './schema';
|
||||
|
||||
export async function updateApiKeyUsedTime(id: string) {
|
||||
await OpenApi.findByIdAndUpdate(id, {
|
||||
lastUsedTime: new Date()
|
||||
});
|
||||
}
|
||||
|
||||
export async function updateApiKeyUsage({ apikey, usage }: { apikey: string; usage: number }) {
|
||||
await OpenApi.findOneAndUpdate(
|
||||
{ apiKey: apikey },
|
||||
{
|
||||
$inc: {
|
||||
usage
|
||||
}
|
||||
}
|
||||
);
|
||||
}
|
57
projects/app/src/service/support/openapi/schema.ts
Normal file
57
projects/app/src/service/support/openapi/schema.ts
Normal file
@@ -0,0 +1,57 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { OpenApiSchema } from '@/types/support/openapi';
|
||||
import { PRICE_SCALE } from '@fastgpt/common/bill/constants';
|
||||
import { formatPrice } from '@fastgpt/common/bill/index';
|
||||
|
||||
const OpenApiSchema = new Schema(
|
||||
{
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
apiKey: {
|
||||
type: String,
|
||||
required: true,
|
||||
get: (val: string) => `******${val.substring(val.length - 4)}`
|
||||
},
|
||||
createTime: {
|
||||
type: Date,
|
||||
default: () => new Date()
|
||||
},
|
||||
lastUsedTime: {
|
||||
type: Date
|
||||
},
|
||||
appId: {
|
||||
type: String,
|
||||
required: false
|
||||
},
|
||||
name: {
|
||||
type: String,
|
||||
default: 'Api Key'
|
||||
},
|
||||
usage: {
|
||||
// total usage. value from bill total
|
||||
type: Number,
|
||||
default: 0,
|
||||
get: (val: number) => formatPrice(val)
|
||||
},
|
||||
limit: {
|
||||
expiredTime: {
|
||||
type: Date
|
||||
},
|
||||
credit: {
|
||||
// value from user settings
|
||||
type: Number,
|
||||
default: -1,
|
||||
set: (val: number) => val * PRICE_SCALE,
|
||||
get: (val: number) => formatPrice(val)
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
toObject: { getters: true }
|
||||
}
|
||||
);
|
||||
|
||||
export const OpenApi: Model<OpenApiSchema> = models['openapi'] || model('openapi', OpenApiSchema);
|
79
projects/app/src/service/support/outLink/auth.ts
Normal file
79
projects/app/src/service/support/outLink/auth.ts
Normal file
@@ -0,0 +1,79 @@
|
||||
import { PRICE_SCALE } from '@fastgpt/common/bill/constants';
|
||||
import { IpLimit } from '@/service/common/ipLimit/schema';
|
||||
import { authBalanceByUid, AuthUserTypeEnum } from '@/service/utils/auth';
|
||||
import { OutLinkSchema } from '@/types/support/outLink';
|
||||
import { OutLink } from './schema';
|
||||
|
||||
export async function authOutLinkChat({ shareId, ip }: { shareId: string; ip?: string | null }) {
|
||||
// get outLink
|
||||
const outLink = await OutLink.findOne({
|
||||
shareId
|
||||
});
|
||||
|
||||
if (!outLink) {
|
||||
return Promise.reject('分享链接无效');
|
||||
}
|
||||
|
||||
const uid = String(outLink.userId);
|
||||
|
||||
// authBalance
|
||||
const user = await authBalanceByUid(uid);
|
||||
|
||||
// limit auth
|
||||
await authOutLinkLimit({ outLink, ip });
|
||||
|
||||
return {
|
||||
user,
|
||||
userId: String(outLink.userId),
|
||||
appId: String(outLink.appId),
|
||||
authType: AuthUserTypeEnum.token,
|
||||
responseDetail: outLink.responseDetail
|
||||
};
|
||||
}
|
||||
|
||||
export async function authOutLinkLimit({
|
||||
outLink,
|
||||
ip
|
||||
}: {
|
||||
outLink: OutLinkSchema;
|
||||
ip?: string | null;
|
||||
}) {
|
||||
if (!ip || !outLink.limit) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (outLink.limit.expiredTime && outLink.limit.expiredTime.getTime() < Date.now()) {
|
||||
return Promise.reject('分享链接已过期');
|
||||
}
|
||||
|
||||
if (outLink.limit.credit > -1 && outLink.total > outLink.limit.credit * PRICE_SCALE) {
|
||||
return Promise.reject('链接超出使用限制');
|
||||
}
|
||||
|
||||
const ipLimit = await IpLimit.findOne({ ip, eventId: outLink._id });
|
||||
|
||||
try {
|
||||
if (!ipLimit) {
|
||||
await IpLimit.create({
|
||||
eventId: outLink._id,
|
||||
ip,
|
||||
account: outLink.limit.QPM - 1
|
||||
});
|
||||
return;
|
||||
}
|
||||
// over one minute
|
||||
const diffTime = Date.now() - ipLimit.lastMinute.getTime();
|
||||
if (diffTime >= 60 * 1000) {
|
||||
ipLimit.account = outLink.limit.QPM - 1;
|
||||
ipLimit.lastMinute = new Date();
|
||||
return await ipLimit.save();
|
||||
}
|
||||
if (ipLimit.account <= 0) {
|
||||
return Promise.reject(
|
||||
`每分钟仅能请求 ${outLink.limit.QPM} 次, ${60 - Math.round(diffTime / 1000)}s 后重试~`
|
||||
);
|
||||
}
|
||||
ipLimit.account = ipLimit.account - 1;
|
||||
await ipLimit.save();
|
||||
} catch (error) {}
|
||||
}
|
22
projects/app/src/service/support/outLink/index.ts
Normal file
22
projects/app/src/service/support/outLink/index.ts
Normal file
@@ -0,0 +1,22 @@
|
||||
import { addLog } from '@/service/utils/tools';
|
||||
import { OutLink } from './schema';
|
||||
|
||||
export const updateOutLinkUsage = async ({
|
||||
shareId,
|
||||
total
|
||||
}: {
|
||||
shareId: string;
|
||||
total: number;
|
||||
}) => {
|
||||
try {
|
||||
await OutLink.findOneAndUpdate(
|
||||
{ shareId },
|
||||
{
|
||||
$inc: { total },
|
||||
lastTime: new Date()
|
||||
}
|
||||
);
|
||||
} catch (err) {
|
||||
addLog.error('update shareChat error', err);
|
||||
}
|
||||
};
|
55
projects/app/src/service/support/outLink/schema.ts
Normal file
55
projects/app/src/service/support/outLink/schema.ts
Normal file
@@ -0,0 +1,55 @@
|
||||
import { Schema, model, models, Model } from 'mongoose';
|
||||
import { OutLinkSchema as SchemaType } from '@/types/support/outLink';
|
||||
import { OutLinkTypeEnum } from '@/constants/chat';
|
||||
|
||||
const OutLinkSchema = new Schema({
|
||||
shareId: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
userId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'user',
|
||||
required: true
|
||||
},
|
||||
appId: {
|
||||
type: Schema.Types.ObjectId,
|
||||
ref: 'model',
|
||||
required: true
|
||||
},
|
||||
type: {
|
||||
type: String,
|
||||
default: OutLinkTypeEnum.share
|
||||
},
|
||||
name: {
|
||||
type: String,
|
||||
required: true
|
||||
},
|
||||
total: {
|
||||
// total amount
|
||||
type: Number,
|
||||
default: 0
|
||||
},
|
||||
lastTime: {
|
||||
type: Date
|
||||
},
|
||||
responseDetail: {
|
||||
type: Boolean,
|
||||
default: false
|
||||
},
|
||||
limit: {
|
||||
expiredTime: {
|
||||
type: Date
|
||||
},
|
||||
QPM: {
|
||||
type: Number,
|
||||
default: 1000
|
||||
},
|
||||
credit: {
|
||||
type: Number,
|
||||
default: -1
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
export const OutLink: Model<SchemaType> = models['outlinks'] || model('outlinks', OutLinkSchema);
|
201
projects/app/src/service/utils/auth.ts
Normal file
201
projects/app/src/service/utils/auth.ts
Normal file
@@ -0,0 +1,201 @@
|
||||
import type { NextApiRequest } from 'next';
|
||||
import Cookie from 'cookie';
|
||||
import { App, OpenApi, User, KB } from '../mongo';
|
||||
import type { AppSchema, UserModelSchema } from '@/types/mongoSchema';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
import { authJWT } from './tools';
|
||||
import { authOpenApiKey } from '../support/openapi/auth';
|
||||
|
||||
export enum AuthUserTypeEnum {
|
||||
token = 'token',
|
||||
root = 'root',
|
||||
apikey = 'apikey'
|
||||
}
|
||||
|
||||
export const authCookieToken = async (cookie?: string, token?: string): Promise<string> => {
|
||||
// 获取 cookie
|
||||
const cookies = Cookie.parse(cookie || '');
|
||||
const cookieToken = cookies.token || token;
|
||||
|
||||
if (!cookieToken) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthorization);
|
||||
}
|
||||
|
||||
return await authJWT(cookieToken);
|
||||
};
|
||||
|
||||
/* auth balance */
|
||||
export const authBalanceByUid = async (uid: string) => {
|
||||
const user = await User.findById<UserModelSchema>(
|
||||
uid,
|
||||
'_id username balance openaiAccount timezone'
|
||||
);
|
||||
if (!user) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthorization);
|
||||
}
|
||||
|
||||
if (user.balance <= 0) {
|
||||
return Promise.reject(ERROR_ENUM.insufficientQuota);
|
||||
}
|
||||
return user;
|
||||
};
|
||||
|
||||
/* uniform auth user */
|
||||
export const authUser = async ({
|
||||
req,
|
||||
authToken = false,
|
||||
authRoot = false,
|
||||
authBalance = false
|
||||
}: {
|
||||
req: NextApiRequest;
|
||||
authToken?: boolean;
|
||||
authRoot?: boolean;
|
||||
authBalance?: boolean;
|
||||
}) => {
|
||||
const parseAuthorization = async (authorization?: string) => {
|
||||
if (!authorization) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthorization);
|
||||
}
|
||||
|
||||
// Bearer fastgpt-xxxx-appId
|
||||
const auth = authorization.split(' ')[1];
|
||||
if (!auth) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthorization);
|
||||
}
|
||||
|
||||
const { apikey, appId: authorizationAppid = '' } = await (async () => {
|
||||
const arr = auth.split('-');
|
||||
// abandon
|
||||
if (arr.length === 3) {
|
||||
return {
|
||||
apikey: `${arr[0]}-${arr[1]}`,
|
||||
appId: arr[2]
|
||||
};
|
||||
}
|
||||
if (arr.length === 2) {
|
||||
return {
|
||||
apikey: auth
|
||||
};
|
||||
}
|
||||
return Promise.reject(ERROR_ENUM.unAuthorization);
|
||||
})();
|
||||
|
||||
// auth apikey
|
||||
const { userId, appId: apiKeyAppId = '' } = await authOpenApiKey({ apikey });
|
||||
|
||||
return {
|
||||
uid: userId,
|
||||
apikey,
|
||||
appId: apiKeyAppId || authorizationAppid
|
||||
};
|
||||
};
|
||||
const parseRootKey = async (rootKey?: string, userId = '') => {
|
||||
if (!rootKey || !process.env.ROOT_KEY || rootKey !== process.env.ROOT_KEY) {
|
||||
return Promise.reject(ERROR_ENUM.unAuthorization);
|
||||
}
|
||||
return userId;
|
||||
};
|
||||
|
||||
const { cookie, token, apikey, rootkey, userid, authorization } = (req.headers || {}) as {
|
||||
cookie?: string;
|
||||
token?: string;
|
||||
apikey?: string;
|
||||
rootkey?: string; // abandon
|
||||
userid?: string;
|
||||
authorization?: string;
|
||||
};
|
||||
|
||||
let uid = '';
|
||||
let appId = '';
|
||||
let openApiKey = apikey;
|
||||
let authType: `${AuthUserTypeEnum}` = AuthUserTypeEnum.token;
|
||||
|
||||
if (authToken) {
|
||||
uid = await authCookieToken(cookie, token);
|
||||
authType = AuthUserTypeEnum.token;
|
||||
} else if (authRoot) {
|
||||
uid = await parseRootKey(rootkey, userid);
|
||||
authType = AuthUserTypeEnum.root;
|
||||
} else if (cookie || token) {
|
||||
uid = await authCookieToken(cookie, token);
|
||||
authType = AuthUserTypeEnum.token;
|
||||
} else if (apikey) {
|
||||
const parseResult = await authOpenApiKey({ apikey });
|
||||
uid = parseResult.userId;
|
||||
authType = AuthUserTypeEnum.apikey;
|
||||
openApiKey = parseResult.apikey;
|
||||
} else if (authorization) {
|
||||
const authResponse = await parseAuthorization(authorization);
|
||||
uid = authResponse.uid;
|
||||
appId = authResponse.appId;
|
||||
openApiKey = authResponse.apikey;
|
||||
authType = AuthUserTypeEnum.apikey;
|
||||
} else if (rootkey) {
|
||||
uid = await parseRootKey(rootkey, userid);
|
||||
authType = AuthUserTypeEnum.root;
|
||||
} else {
|
||||
return Promise.reject(ERROR_ENUM.unAuthorization);
|
||||
}
|
||||
|
||||
// balance check
|
||||
const user = await (() => {
|
||||
if (authBalance) {
|
||||
return authBalanceByUid(uid);
|
||||
}
|
||||
})();
|
||||
|
||||
return {
|
||||
userId: String(uid),
|
||||
appId,
|
||||
authType,
|
||||
user,
|
||||
apikey: openApiKey
|
||||
};
|
||||
};
|
||||
|
||||
// 模型使用权校验
|
||||
export const authApp = async ({
|
||||
appId,
|
||||
userId,
|
||||
authUser = true,
|
||||
authOwner = true,
|
||||
reserveDetail = false
|
||||
}: {
|
||||
appId: string;
|
||||
userId: string;
|
||||
authUser?: boolean;
|
||||
authOwner?: boolean;
|
||||
reserveDetail?: boolean; // focus reserve detail
|
||||
}) => {
|
||||
// 获取 app 数据
|
||||
const app = await App.findById<AppSchema>(appId);
|
||||
if (!app) {
|
||||
return Promise.reject('App is not exists');
|
||||
}
|
||||
|
||||
/*
|
||||
Access verification
|
||||
1. authOwner=true or authUser = true , just owner can use
|
||||
2. authUser = false and share, anyone can use
|
||||
*/
|
||||
if (authOwner || authUser) {
|
||||
if (userId !== String(app.userId)) return Promise.reject(ERROR_ENUM.unAuthModel);
|
||||
}
|
||||
|
||||
return {
|
||||
app,
|
||||
showModelDetail: userId === String(app.userId)
|
||||
};
|
||||
};
|
||||
|
||||
// 知识库操作权限
|
||||
export const authKb = async ({ kbId, userId }: { kbId: string; userId: string }) => {
|
||||
const kb = await KB.findOne({
|
||||
_id: kbId,
|
||||
userId
|
||||
});
|
||||
if (kb) {
|
||||
return kb;
|
||||
}
|
||||
return Promise.reject(ERROR_ENUM.unAuthKb);
|
||||
};
|
93
projects/app/src/service/utils/chat/saveChat.ts
Normal file
93
projects/app/src/service/utils/chat/saveChat.ts
Normal file
@@ -0,0 +1,93 @@
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { Chat, App, ChatItem } from '@/service/mongo';
|
||||
import { ChatSourceEnum } from '@/constants/chat';
|
||||
|
||||
type Props = {
|
||||
chatId: string;
|
||||
appId: string;
|
||||
userId: string;
|
||||
variables?: Record<string, any>;
|
||||
isOwner: boolean;
|
||||
source: `${ChatSourceEnum}`;
|
||||
shareId?: string;
|
||||
content: [ChatItemType, ChatItemType];
|
||||
};
|
||||
|
||||
export async function saveChat({
|
||||
chatId,
|
||||
appId,
|
||||
userId,
|
||||
variables,
|
||||
isOwner,
|
||||
source,
|
||||
shareId,
|
||||
content
|
||||
}: Props) {
|
||||
try {
|
||||
const chatHistory = await Chat.findOne(
|
||||
{
|
||||
chatId,
|
||||
userId,
|
||||
appId
|
||||
},
|
||||
'_id'
|
||||
);
|
||||
|
||||
const promise: any[] = [
|
||||
ChatItem.insertMany(
|
||||
content.map((item) => ({
|
||||
chatId,
|
||||
userId,
|
||||
appId,
|
||||
...item
|
||||
}))
|
||||
)
|
||||
];
|
||||
|
||||
if (chatHistory) {
|
||||
promise.push(
|
||||
Chat.updateOne(
|
||||
{ chatId, userId, appId },
|
||||
{
|
||||
title: content[0].value.slice(0, 20),
|
||||
updateTime: new Date()
|
||||
}
|
||||
)
|
||||
);
|
||||
} else {
|
||||
promise.push(
|
||||
Chat.create({
|
||||
chatId,
|
||||
userId,
|
||||
appId,
|
||||
variables,
|
||||
title: content[0].value.slice(0, 20),
|
||||
source,
|
||||
shareId
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
if (isOwner && source === ChatSourceEnum.online) {
|
||||
promise.push(
|
||||
App.findByIdAndUpdate(appId, {
|
||||
updateTime: new Date()
|
||||
})
|
||||
);
|
||||
}
|
||||
|
||||
await Promise.all(promise);
|
||||
} catch (error) {
|
||||
Chat.updateOne(
|
||||
{ chatId, userId },
|
||||
{
|
||||
$push: {
|
||||
content: {
|
||||
$each: [],
|
||||
$slice: -10
|
||||
}
|
||||
}
|
||||
}
|
||||
);
|
||||
}
|
||||
}
|
24
projects/app/src/service/utils/data.ts
Normal file
24
projects/app/src/service/utils/data.ts
Normal file
@@ -0,0 +1,24 @@
|
||||
export const getChatModel = (model?: string) => {
|
||||
return global.chatModels.find((item) => item.model === model);
|
||||
};
|
||||
export const getVectorModel = (model?: string) => {
|
||||
return (
|
||||
global.vectorModels.find((item) => item.model === model) || {
|
||||
model: 'UnKnow',
|
||||
name: 'UnKnow',
|
||||
defaultToken: 500,
|
||||
price: 0,
|
||||
maxToken: 3000
|
||||
}
|
||||
);
|
||||
};
|
||||
|
||||
export const getModel = (model?: string) => {
|
||||
return [
|
||||
...global.chatModels,
|
||||
...global.vectorModels,
|
||||
global.qaModel,
|
||||
global.extractModel,
|
||||
global.cqModel
|
||||
].find((item) => item.model === model);
|
||||
};
|
117
projects/app/src/service/utils/tools.ts
Normal file
117
projects/app/src/service/utils/tools.ts
Normal file
@@ -0,0 +1,117 @@
|
||||
import type { NextApiResponse, NextApiHandler, NextApiRequest } from 'next';
|
||||
import NextCors from 'nextjs-cors';
|
||||
import crypto from 'crypto';
|
||||
import jwt from 'jsonwebtoken';
|
||||
import { generateQA } from '../events/generateQA';
|
||||
import { generateVector } from '../events/generateVector';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
|
||||
/* 密码加密 */
|
||||
export const hashPassword = (psw: string) => {
|
||||
return crypto.createHash('sha256').update(psw).digest('hex');
|
||||
};
|
||||
|
||||
/* 生成 token */
|
||||
export const generateToken = (userId: string) => {
|
||||
const key = process.env.TOKEN_KEY as string;
|
||||
const token = jwt.sign(
|
||||
{
|
||||
userId,
|
||||
exp: Math.floor(Date.now() / 1000) + 60 * 60 * 24 * 7
|
||||
},
|
||||
key
|
||||
);
|
||||
return token;
|
||||
};
|
||||
// auth token
|
||||
export const authJWT = (token: string) =>
|
||||
new Promise<string>((resolve, reject) => {
|
||||
const key = process.env.TOKEN_KEY as string;
|
||||
|
||||
jwt.verify(token, key, function (err, decoded: any) {
|
||||
if (err || !decoded?.userId) {
|
||||
reject(ERROR_ENUM.unAuthorization);
|
||||
return;
|
||||
}
|
||||
resolve(decoded.userId);
|
||||
});
|
||||
});
|
||||
/* set cookie */
|
||||
export const setCookie = (res: NextApiResponse, token: string) => {
|
||||
res.setHeader(
|
||||
'Set-Cookie',
|
||||
`token=${token}; Path=/; HttpOnly; Max-Age=604800; Samesite=None; Secure;`
|
||||
);
|
||||
};
|
||||
/* clear cookie */
|
||||
export const clearCookie = (res: NextApiResponse) => {
|
||||
res.setHeader('Set-Cookie', 'token=; Path=/; Max-Age=0');
|
||||
};
|
||||
|
||||
export function withNextCors(handler: NextApiHandler): NextApiHandler {
|
||||
return async function nextApiHandlerWrappedWithNextCors(
|
||||
req: NextApiRequest,
|
||||
res: NextApiResponse
|
||||
) {
|
||||
const methods = ['GET', 'eHEAD', 'PUT', 'PATCH', 'POST', 'DELETE'];
|
||||
const origin = req.headers.origin;
|
||||
await NextCors(req, res, {
|
||||
methods,
|
||||
origin: origin,
|
||||
optionsSuccessStatus: 200
|
||||
});
|
||||
|
||||
return handler(req, res);
|
||||
};
|
||||
}
|
||||
|
||||
/* start task */
|
||||
export const startQueue = () => {
|
||||
for (let i = 0; i < global.systemEnv.qaMaxProcess; i++) {
|
||||
generateQA();
|
||||
}
|
||||
for (let i = 0; i < global.systemEnv.vectorMaxProcess; i++) {
|
||||
generateVector();
|
||||
}
|
||||
};
|
||||
|
||||
export const sseResponse = ({
|
||||
res,
|
||||
event,
|
||||
data
|
||||
}: {
|
||||
res: NextApiResponse;
|
||||
event?: string;
|
||||
data: string;
|
||||
}) => {
|
||||
if (res.closed) return;
|
||||
event && res.write(`event: ${event}\n`);
|
||||
res.write(`data: ${data}\n\n`);
|
||||
};
|
||||
|
||||
/* add logger */
|
||||
export const addLog = {
|
||||
info: (msg: string, obj?: Record<string, any>) => {
|
||||
global.logger?.info(msg, { meta: obj });
|
||||
},
|
||||
error: (msg: string, error?: any) => {
|
||||
global.logger?.error(msg, {
|
||||
meta: {
|
||||
stack: error?.stack,
|
||||
...(error?.config && {
|
||||
config: {
|
||||
headers: error.config.headers,
|
||||
url: error.config.url,
|
||||
data: error.config.data
|
||||
}
|
||||
}),
|
||||
...(error?.response && {
|
||||
response: {
|
||||
status: error.response.status,
|
||||
statusText: error.response.statusText
|
||||
}
|
||||
})
|
||||
}
|
||||
});
|
||||
}
|
||||
};
|
Reference in New Issue
Block a user