mirror of
https://github.com/labring/FastGPT.git
synced 2025-08-05 14:47:38 +00:00
4.6.8-alpha (#804)
* perf: redirect request and err log replace perf: dataset openapi feat: session fix: retry input error feat: 468 doc sub page feat: standard sub perf: rerank tip perf: rerank tip perf: api sdk perf: openapi sub plan perf: sub ui fix: ts * perf: init log * fix: variable select * sub page * icon * perf: llm model config * perf: menu ux * perf: system store * perf: publish app name * fix: init data * perf: flow edit ux * fix: value type format and ux * fix prompt editor default value (#13) * fix prompt editor default value * fix prompt editor update when not focus * add key with variable --------- Co-authored-by: Archer <545436317@qq.com> * fix: value type * doc * i18n * import path * home page * perf: mongo session running * fix: ts * perf: use toast * perf: flow edit * perf: sse response * slider ui * fetch error * fix prompt editor rerender when not focus by key defaultvalue (#14) * perf: prompt editor * feat: dataset search concat * perf: doc * fix:ts * perf: doc * fix json editor onblur value (#15) * faq * vector model default config * ipv6 --------- Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
This commit is contained in:
@@ -8,8 +8,8 @@ import { ModuleInputKeyEnum, ModuleOutputKeyEnum } from '@fastgpt/global/core/mo
|
||||
import type { ModuleDispatchProps } from '@fastgpt/global/core/module/type.d';
|
||||
import { replaceVariable } from '@fastgpt/global/common/string/tools';
|
||||
import { Prompt_CQJson } from '@/global/core/prompt/agent';
|
||||
import { FunctionModelItemType } from '@fastgpt/global/core/ai/model.d';
|
||||
import { ModelTypeEnum, getCQModel } from '@/service/core/ai/model';
|
||||
import { LLMModelItemType } from '@fastgpt/global/core/ai/model.d';
|
||||
import { ModelTypeEnum, getLLMModel } from '@/service/core/ai/model';
|
||||
import { getHistories } from '../utils';
|
||||
import { formatModelPrice2Store } from '@/service/support/wallet/bill/utils';
|
||||
|
||||
@@ -32,14 +32,14 @@ export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse
|
||||
const {
|
||||
user,
|
||||
histories,
|
||||
inputs: { model, history = 6, agents, userChatInput }
|
||||
params: { model, history = 6, agents, userChatInput }
|
||||
} = props as Props;
|
||||
|
||||
if (!userChatInput) {
|
||||
return Promise.reject('Input is empty');
|
||||
}
|
||||
|
||||
const cqModel = getCQModel(model);
|
||||
const cqModel = getLLMModel(model);
|
||||
|
||||
const chatHistories = getHistories(history, histories);
|
||||
|
||||
@@ -64,7 +64,7 @@ export const dispatchClassifyQuestion = async (props: Props): Promise<CQResponse
|
||||
model: cqModel.model,
|
||||
inputLen: inputTokens,
|
||||
outputLen: outputTokens,
|
||||
type: ModelTypeEnum.cq
|
||||
type: ModelTypeEnum.llm
|
||||
});
|
||||
|
||||
return {
|
||||
@@ -86,8 +86,8 @@ async function toolChoice({
|
||||
user,
|
||||
cqModel,
|
||||
histories,
|
||||
inputs: { agents, systemPrompt, userChatInput }
|
||||
}: Props & { cqModel: FunctionModelItemType }) {
|
||||
params: { agents, systemPrompt, userChatInput }
|
||||
}: Props & { cqModel: LLMModelItemType }) {
|
||||
const messages: ChatItemType[] = [
|
||||
...histories,
|
||||
{
|
||||
@@ -112,7 +112,7 @@ ${systemPrompt}
|
||||
// function body
|
||||
const agentFunction = {
|
||||
name: agentFunName,
|
||||
description: '根据对话记录及补充的背景知识,对问题进行分类,并返回对应的类型字段',
|
||||
description: '根据对话记录及背景知识,对问题进行分类,并返回对应的类型字段',
|
||||
parameters: {
|
||||
type: 'object',
|
||||
properties: {
|
||||
@@ -127,7 +127,10 @@ ${systemPrompt}
|
||||
required: ['type']
|
||||
}
|
||||
};
|
||||
const ai = getAIApi(user.openaiAccount, 480000);
|
||||
const ai = getAIApi({
|
||||
userKey: user.openaiAccount,
|
||||
timeout: 480000
|
||||
});
|
||||
|
||||
const response = await ai.chat.completions.create({
|
||||
model: cqModel.model,
|
||||
@@ -170,12 +173,12 @@ async function completions({
|
||||
cqModel,
|
||||
user,
|
||||
histories,
|
||||
inputs: { agents, systemPrompt = '', userChatInput }
|
||||
}: Props & { cqModel: FunctionModelItemType }) {
|
||||
params: { agents, systemPrompt = '', userChatInput }
|
||||
}: Props & { cqModel: LLMModelItemType }) {
|
||||
const messages: ChatItemType[] = [
|
||||
{
|
||||
obj: ChatRoleEnum.Human,
|
||||
value: replaceVariable(cqModel.functionPrompt || Prompt_CQJson, {
|
||||
value: replaceVariable(cqModel.customCQPrompt || Prompt_CQJson, {
|
||||
systemPrompt: systemPrompt || 'null',
|
||||
typeList: agents
|
||||
.map((item) => `{"questionType": "${item.value}", "typeId": "${item.key}"}`)
|
||||
@@ -186,7 +189,10 @@ async function completions({
|
||||
}
|
||||
];
|
||||
|
||||
const ai = getAIApi(user.openaiAccount, 480000);
|
||||
const ai = getAIApi({
|
||||
userKey: user.openaiAccount,
|
||||
timeout: 480000
|
||||
});
|
||||
|
||||
const data = await ai.chat.completions.create({
|
||||
model: cqModel.model,
|
||||
|
Reference in New Issue
Block a user