perf: response store

This commit is contained in:
archer
2023-07-23 21:04:57 +08:00
parent ba965320d5
commit 1ffe1be562
20 changed files with 227 additions and 145 deletions

View File

@@ -68,7 +68,8 @@ const ChatSchema = new Schema({
answer: String,
temperature: Number,
maxToken: Number,
finishMessages: Array,
quoteList: Array,
completeMessages: Array,
similarity: Number,
limit: Number,
cqList: Array,

View File

@@ -1,7 +1,7 @@
import { adaptChatItem_openAI } from '@/utils/plugin/openai';
import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatHistoryItemResType, ChatItemType } from '@/types/chat';
import { ChatRoleEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { ChatModuleEnum, ChatRoleEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import type { ClassifyQuestionAgentItemType } from '@/types/app';
import { countModelPrice } from '@/service/events/pushBill';
@@ -17,7 +17,6 @@ export type CQResponse = {
[key: string]: any;
};
const moduleName = 'Classify Question';
const agentModel = 'gpt-3.5-turbo';
const agentFunName = 'agent_user_question';
const maxTokens = 2000;
@@ -88,7 +87,7 @@ export const dispatchClassifyQuestion = async (props: Record<string, any>): Prom
return {
[result.key]: 1,
[TaskResponseKeyEnum.responseData]: {
moduleName,
moduleName: ChatModuleEnum.CQ,
price: countModelPrice({ model: agentModel, tokens }),
model: agentModel,
tokens,

View File

@@ -6,12 +6,13 @@ import { modelToolMap } from '@/utils/plugin';
import { ChatContextFilter } from '@/service/utils/chat/index';
import type { ChatItemType, QuoteItemType } from '@/types/chat';
import type { ChatHistoryItemResType } from '@/types/chat';
import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { ChatModuleEnum, ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { parseStreamChunk, textAdaptGptResponse } from '@/utils/adapt';
import { getOpenAIApi, axiosConfig } from '@/service/ai/openai';
import { TaskResponseKeyEnum } from '@/constants/chat';
import { getChatModel } from '@/service/utils/data';
import { countModelPrice } from '@/service/events/pushBill';
import { ChatModelItemType } from '@/types/model';
export type ChatProps = {
res: NextApiResponse;
@@ -30,8 +31,6 @@ export type ChatResponse = {
[TaskResponseKeyEnum.responseData]: ChatHistoryItemResType;
};
const moduleName = 'AI Chat';
/* request openai chat */
export const dispatchChatCompletion = async (props: Record<string, any>): Promise<ChatResponse> => {
let {
@@ -54,24 +53,153 @@ export const dispatchChatCompletion = async (props: Record<string, any>): Promis
return Promise.reject('The chat model is undefined, you need to select a chat model.');
}
const { filterQuoteQA, quotePrompt } = filterQuote({
quoteQA,
model: modelConstantsData
});
const { messages, filterMessages } = getChatMessages({
model: modelConstantsData,
history,
quotePrompt,
userChatInput,
systemPrompt,
limitPrompt
});
const { max_tokens } = getMaxTokens({
model: modelConstantsData,
maxToken,
filterMessages
});
// console.log(messages);
// FastGpt temperature range: 1~10
temperature = +(modelConstantsData.maxTemperature * (temperature / 10)).toFixed(2);
const chatAPI = getOpenAIApi();
const response = await chatAPI.createChatCompletion(
{
model,
temperature: Number(temperature || 0),
max_tokens,
messages,
// frequency_penalty: 0.5, // 越大,重复内容越少
// presence_penalty: -0.5, // 越大,越容易出现新内容
stream
},
{
timeout: stream ? 60000 : 480000,
responseType: stream ? 'stream' : 'json',
...axiosConfig()
}
);
const { answerText, totalTokens, completeMessages } = await (async () => {
if (stream) {
// sse response
const { answer } = await streamResponse({ res, response });
// count tokens
const completeMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
const totalTokens = countOpenAIToken({
messages: completeMessages
});
return {
answerText: answer,
totalTokens,
completeMessages
};
} else {
const answer = stream ? '' : response.data.choices?.[0].message?.content || '';
const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
const completeMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
return {
answerText: answer,
totalTokens,
completeMessages
};
}
})();
return {
[TaskResponseKeyEnum.answerText]: answerText,
[TaskResponseKeyEnum.responseData]: {
moduleName: ChatModuleEnum.AIChat,
price: countModelPrice({ model, tokens: totalTokens }),
model: modelConstantsData.name,
tokens: totalTokens,
question: userChatInput,
answer: answerText,
maxToken,
quoteList: filterQuoteQA,
completeMessages
}
};
};
function filterQuote({
quoteQA = [],
model
}: {
quoteQA: ChatProps['quoteQA'];
model: ChatModelItemType;
}) {
const sliceResult = modelToolMap.tokenSlice({
model: model.model,
maxToken: model.quoteMaxToken,
messages: quoteQA.map((item, i) => ({
obj: ChatRoleEnum.System,
value: `${i + 1}. [${item.q}\n${item.a}]`
}))
});
// slice filterSearch
const filterQuoteQA = quoteQA.slice(0, sliceResult.length);
const quotePrompt =
filterQuoteQA.length > 0
? `下面是知识库内容:
${filterQuoteQA.map((item, i) => `${i + 1}. [${item.q}\n${item.a}]`).join('\n')}
`
: '';
return {
filterQuoteQA,
quotePrompt
};
}
function getChatMessages({
quotePrompt,
history = [],
systemPrompt,
limitPrompt,
userChatInput,
model
}: {
quotePrompt: string;
history: ChatProps['history'];
systemPrompt: string;
limitPrompt: string;
userChatInput: string;
model: ChatModelItemType;
}) {
const limitText = (() => {
if (limitPrompt) return limitPrompt;
if (quoteQA.length > 0 && !limitPrompt) {
if (quotePrompt && !limitPrompt) {
return '根据知识库内容回答问题,仅回复知识库提供的内容,不要对知识库内容做补充说明。';
}
return '';
})();
const quotePrompt =
quoteQA.length > 0
? `下面是知识库内容:
${quoteQA.map((item, i) => `${i + 1}. [${item.q}\n${item.a}]`).join('\n')}
`
: '';
const messages: ChatItemType[] = [
...(quotePrompt
? [
@@ -103,92 +231,41 @@ ${quoteQA.map((item, i) => `${i + 1}. [${item.q}\n${item.a}]`).join('\n')}
value: userChatInput
}
];
const modelTokenLimit = getChatModel(model)?.contextMaxToken || 4000;
const filterMessages = ChatContextFilter({
model,
model: model.model,
prompts: messages,
maxTokens: Math.ceil(modelTokenLimit - 300) // filter token. not response maxToken
maxTokens: Math.ceil(model.contextMaxToken - 300) // filter token. not response maxToken
});
const adaptMessages = adaptChatItem_openAI({ messages: filterMessages, reserveId: false });
const chatAPI = getOpenAIApi();
console.log(adaptMessages);
/* count response max token */
const promptsToken = modelToolMap.countTokens({
model,
messages: filterMessages
});
maxToken = maxToken + promptsToken > modelTokenLimit ? modelTokenLimit - promptsToken : maxToken;
const response = await chatAPI.createChatCompletion(
{
model,
temperature: Number(temperature || 0),
max_tokens: maxToken,
messages: adaptMessages,
// frequency_penalty: 0.5, // 越大,重复内容越少
// presence_penalty: -0.5, // 越大,越容易出现新内容
stream
},
{
timeout: stream ? 60000 : 480000,
responseType: stream ? 'stream' : 'json',
...axiosConfig()
}
);
const { answerText, totalTokens, finishMessages } = await (async () => {
if (stream) {
// sse response
const { answer } = await streamResponse({ res, response });
// count tokens
const finishMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
const totalTokens = countOpenAIToken({
messages: finishMessages
});
return {
answerText: answer,
totalTokens,
finishMessages
};
} else {
const answer = stream ? '' : response.data.choices?.[0].message?.content || '';
const totalTokens = stream ? 0 : response.data.usage?.total_tokens || 0;
const finishMessages = filterMessages.concat({
obj: ChatRoleEnum.AI,
value: answer
});
return {
answerText: answer,
totalTokens,
finishMessages
};
}
})();
return {
[TaskResponseKeyEnum.answerText]: answerText,
[TaskResponseKeyEnum.responseData]: {
moduleName,
price: countModelPrice({ model, tokens: totalTokens }),
model: modelConstantsData.name,
tokens: totalTokens,
question: userChatInput,
answer: answerText,
maxToken,
finishMessages
}
messages: adaptMessages,
filterMessages
};
};
}
function getMaxTokens({
maxToken,
model,
filterMessages = []
}: {
maxToken: number;
model: ChatModelItemType;
filterMessages: ChatProps['history'];
}) {
const tokensLimit = model.contextMaxToken;
/* count response max token */
const promptsToken = modelToolMap.countTokens({
model: model.model,
messages: filterMessages
});
maxToken = maxToken + promptsToken > tokensLimit ? tokensLimit - promptsToken : maxToken;
return {
max_tokens: maxToken
};
}
async function streamResponse({ res, response }: { res: NextApiResponse; response: any }) {
let answer = '';

View File

@@ -1,6 +1,6 @@
import { PgClient } from '@/service/pg';
import type { ChatHistoryItemResType, ChatItemType } from '@/types/chat';
import { TaskResponseKeyEnum } from '@/constants/chat';
import { ChatModuleEnum, TaskResponseKeyEnum } from '@/constants/chat';
import { getVector } from '@/pages/api/openapi/plugin/vector';
import { countModelPrice } from '@/service/events/pushBill';
import type { SelectedKbType } from '@/types/plugin';
@@ -20,8 +20,6 @@ export type KBSearchResponse = {
quoteQA: QuoteItemType[];
};
const moduleName = 'KB Search';
export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSearchResponse> {
const {
kbList = [],
@@ -65,7 +63,7 @@ export async function dispatchKBSearch(props: Record<string, any>): Promise<KBSe
unEmpty: searchRes.length > 0 ? true : undefined,
quoteQA: searchRes,
responseData: {
moduleName,
moduleName: ChatModuleEnum.KBSearch,
price: countModelPrice({ model: vectorModel.model, tokens: tokenLen }),
model: vectorModel.name,
tokens: tokenLen,

View File

@@ -1,7 +1,6 @@
import { ChatItemType } from '@/types/chat';
import { modelToolMap } from '@/utils/plugin';
import { ChatRoleEnum, sseResponseEventEnum } from '@/constants/chat';
import { sseResponse } from '../tools';
import { ChatRoleEnum } from '@/constants/chat';
import { OpenAiChatEnum } from '@/constants/model';
import type { NextApiResponse } from 'next';
@@ -18,18 +17,6 @@ export type StreamResponseType = {
model: `${OpenAiChatEnum}`;
[key: string]: any;
};
export type StreamResponseReturnType = {
responseContent: string;
totalTokens: number;
finishMessages: ChatItemType[];
};
/* delete invalid symbol */
const simplifyStr = (str = '') =>
str
.replace(/\n+/g, '\n') // 连续空行
.replace(/[^\S\r\n]+/g, ' ') // 连续空白内容
.trim();
/* slice chat context by tokens */
export const ChatContextFilter = ({