mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-23 21:13:50 +00:00
4.7.1-alpha2 (#1153)
Co-authored-by: UUUUnotfound <31206589+UUUUnotfound@users.noreply.github.com> Co-authored-by: Hexiao Zhang <731931282qq@gmail.com> Co-authored-by: heheer <71265218+newfish-cmyk@users.noreply.github.com>
This commit is contained in:
@@ -156,7 +156,7 @@ llm模型全部合并
|
||||
|
||||
请使用 4.6.6-alpha 以上版本,配置文件中的 `reRankModels` 为重排模型,虽然是数组,不过目前仅有第1个生效。
|
||||
|
||||
1. [部署 ReRank 模型](/docs/development/custom-models/reranker/)
|
||||
1. [部署 ReRank 模型](/docs/development/custom-models/bge-rerank/)
|
||||
1. 找到 FastGPT 的配置文件中的 `reRankModels`, 4.6.6 以前是 `ReRankModels`。
|
||||
2. 修改对应的值:(记得去掉注释)
|
||||
|
||||
|
121
docSite/content/docs/development/custom-models/bge-rerank.md
Normal file
121
docSite/content/docs/development/custom-models/bge-rerank.md
Normal file
@@ -0,0 +1,121 @@
|
||||
---
|
||||
title: '接入 bge-rerank 重排模型'
|
||||
description: '接入 bge-rerank 重排模型'
|
||||
icon: 'sort'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 910
|
||||
---
|
||||
|
||||
## 不同模型推荐配置
|
||||
|
||||
推荐配置如下:
|
||||
|
||||
{{< table "table-hover table-striped-columns" >}}
|
||||
| 模型名 | 内存 | 显存 | 硬盘空间 | 启动命令 |
|
||||
|------|---------|---------|----------|--------------------------|
|
||||
| bge-rerank-base | >=4GB | >=4GB | >=8GB | python app.py |
|
||||
| bge-rerank-large | >=8GB | >=8GB | >=8GB | python app.py |
|
||||
| bge-rerank-v2-m3 | >=8GB | >=8GB | >=8GB | python app.py |
|
||||
{{< /table >}}
|
||||
|
||||
## 源码部署
|
||||
|
||||
### 1. 安装环境
|
||||
|
||||
- Python 3.9, 3.10
|
||||
- CUDA 11.7
|
||||
- 科学上网环境
|
||||
|
||||
### 2. 下载代码
|
||||
|
||||
3 个模型代码分别为:
|
||||
|
||||
1. [https://github.com/labring/FastGPT/tree/main/python/reranker/bge-reranker-base](https://github.com/labring/FastGPT/tree/main/python/reranker/bge-reranker-base)
|
||||
2. [https://github.com/labring/FastGPT/tree/main/python/reranker/bge-reranker-large](https://github.com/labring/FastGPT/tree/main/python/reranker/bge-reranker-large)
|
||||
3. [https://github.com/labring/FastGPT/tree/main/python/reranker/bge-rerank-v2-m3](https://github.com/labring/FastGPT/tree/main/python/reranker/bge-rerank-v2-m3)
|
||||
|
||||
### 3. 安装依赖
|
||||
|
||||
```sh
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### 4. 下载模型
|
||||
|
||||
3个模型的 huggingface 仓库地址如下:
|
||||
|
||||
1. [https://huggingface.co/BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base)
|
||||
2. [https://huggingface.co/BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large)
|
||||
3. [https://huggingface.co/BAAI/bge-rerank-v2-m3](https://huggingface.co/BAAI/bge-rerank-v2-m3)
|
||||
|
||||
在对应代码目录下 clone 模型。目录结构:
|
||||
|
||||
```
|
||||
bge-reranker-base/
|
||||
app.py
|
||||
Dockerfile
|
||||
requirements.txt
|
||||
```
|
||||
|
||||
### 5. 运行代码
|
||||
|
||||
```bash
|
||||
python app.py
|
||||
```
|
||||
|
||||
启动成功后应该会显示如下地址:
|
||||
|
||||

|
||||
|
||||
> 这里的 `http://0.0.0.0:6006` 就是连接地址。
|
||||
|
||||
## docker 部署
|
||||
|
||||
**镜像名分别为:**
|
||||
|
||||
1. registry.cn-hangzhou.aliyuncs.com/fastgpt/bge-rerank-base:v0.1 (4 GB+)
|
||||
2. registry.cn-hangzhou.aliyuncs.com/fastgpt/bge-rerank-large:v0.1 (5 GB+)
|
||||
3. registry.cn-hangzhou.aliyuncs.com/fastgpt/bge-rerank-v2-m3:v0.1 (5 GB+)
|
||||
|
||||
**端口**
|
||||
|
||||
6006
|
||||
|
||||
**环境变量**
|
||||
|
||||
```
|
||||
ACCESS_TOKEN=访问安全凭证,请求时,Authorization: Bearer ${ACCESS_TOKEN}
|
||||
```
|
||||
|
||||
**运行命令示例**
|
||||
|
||||
```sh
|
||||
# auth token 为mytoken
|
||||
docker run -d --name reranker -p 6006:6006 -e ACCESS_TOKEN=mytoken --gpus all registry.cn-hangzhou.aliyuncs.com/fastgpt/bge-rerank-base:v0.1
|
||||
```
|
||||
|
||||
**docker-compose.yml示例**
|
||||
```
|
||||
version: "3"
|
||||
services:
|
||||
reranker:
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2
|
||||
container_name: reranker
|
||||
# GPU运行环境,如果宿主机未安装,将deploy配置隐藏即可
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: all
|
||||
capabilities: [gpu]
|
||||
ports:
|
||||
- 6006:6006
|
||||
environment:
|
||||
- ACCESS_TOKEN=mytoken
|
||||
|
||||
```
|
||||
## 接入 FastGPT
|
||||
|
||||
参考 [ReRank模型接入](/docs/development/configuration/#rerank-接入),host 变量为部署的域名。
|
@@ -1,90 +0,0 @@
|
||||
---
|
||||
title: '接入 ReRank 重排模型'
|
||||
description: '接入 ReRank 重排模型'
|
||||
icon: 'sort'
|
||||
draft: false
|
||||
toc: true
|
||||
weight: 910
|
||||
---
|
||||
|
||||
## 推荐配置
|
||||
|
||||
推荐配置如下:
|
||||
|
||||
{{< table "table-hover table-striped-columns" >}}
|
||||
| 类型 | 内存 | 显存 | 硬盘空间 | 启动命令 |
|
||||
|------|---------|---------|----------|--------------------------|
|
||||
| base | >=4GB | >=3GB | >=8GB | python app.py |
|
||||
{{< /table >}}
|
||||
|
||||
## 部署
|
||||
|
||||
### 环境要求
|
||||
|
||||
- Python 3.10.11
|
||||
- CUDA 11.7
|
||||
- 科学上网环境
|
||||
|
||||
### 源码部署
|
||||
|
||||
1. 根据上面的环境配置配置好环境,具体教程自行 GPT;
|
||||
2. 下载 [python 文件](https://github.com/labring/FastGPT/tree/main/python/reranker/bge-reranker-base)
|
||||
3. 在命令行输入命令 `pip install -r requirements.txt`;
|
||||
4. 按照[https://huggingface.co/BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base)下载模型仓库到app.py同级目录
|
||||
5. 添加环境变量 `export ACCESS_TOKEN=XXXXXX` 配置 token,这里的 token 只是加一层验证,防止接口被人盗用,默认值为 `ACCESS_TOKEN` ;
|
||||
6. 执行命令 `python app.py`。
|
||||
|
||||
然后等待模型下载,直到模型加载完毕为止。如果出现报错先问 GPT。
|
||||
|
||||
启动成功后应该会显示如下地址:
|
||||
|
||||

|
||||
|
||||
> 这里的 `http://0.0.0.0:6006` 就是连接地址。
|
||||
|
||||
### docker 部署
|
||||
|
||||
+ 镜像名: `registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2`
|
||||
+ 端口号: 6006
|
||||
+ 大小:约8GB
|
||||
|
||||
**设置安全凭证(即oneapi中的渠道密钥)**
|
||||
```
|
||||
ACCESS_TOKEN=mytoken
|
||||
```
|
||||
|
||||
**运行命令示例**
|
||||
- 无需GPU环境,使用CPU运行
|
||||
```sh
|
||||
docker run -d --name reranker -p 6006:6006 -e ACCESS_TOKEN=mytoken registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2
|
||||
```
|
||||
|
||||
- 需要CUDA 11.7环境
|
||||
```sh
|
||||
docker run -d --gpus all --name reranker -p 6006:6006 -e ACCESS_TOKEN=mytoken registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2
|
||||
```
|
||||
|
||||
**docker-compose.yml示例**
|
||||
```
|
||||
version: "3"
|
||||
services:
|
||||
reranker:
|
||||
image: registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2
|
||||
container_name: reranker
|
||||
# GPU运行环境,如果宿主机未安装,将deploy配置隐藏即可
|
||||
deploy:
|
||||
resources:
|
||||
reservations:
|
||||
devices:
|
||||
- driver: nvidia
|
||||
count: all
|
||||
capabilities: [gpu]
|
||||
ports:
|
||||
- 6006:6006
|
||||
environment:
|
||||
- ACCESS_TOKEN=mytoken
|
||||
|
||||
```
|
||||
## 接入 FastGPT
|
||||
|
||||
参考 [ReRank模型接入](/docs/development/configuration/#rerank-接入),host 变量为部署的域名。
|
@@ -32,7 +32,7 @@ FastGPT 使用了 one-api 项目来管理模型池,其可以兼容 OpenAI 、A
|
||||
|
||||
可选择 [Sealos 快速部署 OneAPI](/docs/development/one-api),更多部署方法可参考该项目的 [README](https://github.com/songquanpeng/one-api),也可以直接通过以下按钮一键部署:
|
||||
|
||||
<a href="https://template.cloud.sealos.io/deploy?templateName=one-api" rel="external" target="_blank"><img src="https://cdn.jsdelivr.us/gh/labring-actions/templates@main/Deploy-on-Sealos.svg" alt="Deploy on Sealos"/></a>
|
||||
<a href="https://template.cloud.sealos.io/deploy?templateName=one-api" rel="external" target="_blank"><img src="https://cdn.jsdelivr.net/gh/labring-actions/templates@main/Deploy-on-Sealos.svg" alt="Deploy on Sealos"/></a>
|
||||
|
||||
## 一、安装 Docker 和 docker-compose
|
||||
|
||||
|
@@ -29,7 +29,7 @@ MySQL 版本支持多实例,高并发。
|
||||
|
||||
直接点击以下按钮即可一键部署 👇
|
||||
|
||||
<a href="https://template.cloud.sealos.io/deploy?templateName=one-api" rel="external" target="_blank"><img src="https://cdn.jsdelivr.us/gh/labring-actions/templates@main/Deploy-on-Sealos.svg" alt="Deploy on Sealos"/></a>
|
||||
<a href="https://template.cloud.sealos.io/deploy?templateName=one-api" rel="external" target="_blank"><img src="https://cdn.jsdelivr.net/gh/labring-actions/templates@main/Deploy-on-Sealos.svg" alt="Deploy on Sealos"/></a>
|
||||
|
||||
部署完后会跳转「应用管理」,数据库在另一个应用「数据库」中。需要等待 1~3 分钟数据库运行后才能访问成功。
|
||||
|
||||
|
@@ -21,7 +21,7 @@ FastGPT 使用了 one-api 项目来管理模型池,其可以兼容 OpenAI 、A
|
||||
## 一键部署
|
||||
Sealos 的服务器在国外,不需要额外处理网络问题,无需服务器、无需魔法、无需域名,支持高并发 & 动态伸缩。点击以下按钮即可一键部署 👇
|
||||
|
||||
<a href="https://template.cloud.sealos.io/deploy?templateName=fastgpt" rel="external" target="_blank"><img src="https://cdn.jsdelivr.us/gh/labring-actions/templates@main/Deploy-on-Sealos.svg" alt="Deploy on Sealos"/></a>
|
||||
<a href="https://template.cloud.sealos.io/deploy?templateName=fastgpt" rel="external" target="_blank"><img src="https://cdn.jsdelivr.net/gh/labring-actions/templates@main/Deploy-on-Sealos.svg" alt="Deploy on Sealos"/></a>
|
||||
|
||||
由于需要部署数据库,部署完后需要等待 2~4 分钟才能正常访问。默认用了最低配置,首次访问时会有些慢。
|
||||
|
||||
|
@@ -1,5 +1,5 @@
|
||||
---
|
||||
title: 'V4.7'
|
||||
title: 'V4.7(需要初始化)'
|
||||
description: 'FastGPT V4.7更新说明'
|
||||
icon: 'upgrade'
|
||||
draft: false
|
||||
@@ -26,7 +26,7 @@ curl --location --request POST 'https://{{host}}/api/admin/initv47' \
|
||||
|
||||
## 3. 升级 ReRank 模型
|
||||
|
||||
4.7对ReRank模型进行了格式变动,兼容 cohere 的格式,可以直接使用 cohere 提供的 API。如果是本地的 ReRank 模型,需要修改镜像为:`registry.cn-hangzhou.aliyuncs.com/fastgpt/rerank:v0.2` 。
|
||||
4.7对ReRank模型进行了格式变动,兼容 cohere 的格式,可以直接使用 cohere 提供的 API。如果是本地的 ReRank 模型,需要修改镜像为:`registry.cn-hangzhou.aliyuncs.com/fastgpt/bge-rerank-base:v0.1` 。
|
||||
|
||||
cohere的重排模型对中文不是很好,感觉不如 bge 的好用,接入教程如下:
|
||||
|
||||
|
@@ -21,11 +21,13 @@ curl --location --request POST 'https://{{host}}/api/admin/clearInvalidData' \
|
||||
|
||||
## V4.7.1 更新说明
|
||||
|
||||
1. 新增 - Pptx 和 xlsx 文件读取。但所有文件读取都放服务端,会消耗更多的服务器资源,以及无法在上传时预览更多内容。
|
||||
2. 新增 - 集成 Laf 云函数,可以读取 Laf 账号中的云函数作为 HTTP 模块。
|
||||
3. 新增 - 定时器,清理垃圾数据。(采用小范围清理,会清理最近n个小时的,所以请保证服务持续运行,长时间不允许,可以继续执行 clearInvalidData 的接口进行全量清理。)
|
||||
4. 商业版新增 - 后台配置系统通知。
|
||||
5. 修改 - csv导入模板,取消 header 校验,自动获取前两列。
|
||||
6. 修复 - 工具调用模块连线数据类型校验错误。
|
||||
7. 修复 - 自定义索引输入时,解构数据失败。
|
||||
8. 修复 - rerank 模型数据格式。
|
||||
1. 新增 - 语音输入完整配置。支持选择是否打开语音输入(包括分享页面),支持语音输入后自动发送,支持语音输入后自动语音播放(流式)。
|
||||
2. 新增 - Pptx 和 xlsx 文件读取。但所有文件读取都放服务端,会消耗更多的服务器资源,以及无法在上传时预览更多内容。
|
||||
3. 新增 - 集成 Laf 云函数,可以读取 Laf 账号中的云函数作为 HTTP 模块。
|
||||
4. 新增 - 定时器,清理垃圾数据。(采用小范围清理,会清理最近n个小时的,所以请保证服务持续运行,长时间不允许,可以继续执行 clearInvalidData 的接口进行全量清理。)
|
||||
5. 商业版新增 - 后台配置系统通知。
|
||||
6. 修改 - csv导入模板,取消 header 校验,自动获取前两列。
|
||||
7. 修复 - 工具调用模块连线数据类型校验错误。
|
||||
8. 修复 - 自定义索引输入时,解构数据失败。
|
||||
9. 修复 - rerank 模型数据格式。
|
||||
10. 修复 - 问题补全历史记录BUG
|
Reference in New Issue
Block a user