mirror of
https://github.com/labring/FastGPT.git
synced 2025-07-22 20:37:48 +00:00
feat: chat content use tiktoken count
This commit is contained in:
@@ -29,7 +29,6 @@
|
||||
"eventsource-parser": "^0.1.0",
|
||||
"formidable": "^2.1.1",
|
||||
"framer-motion": "^9.0.6",
|
||||
"gpt-token-utils": "^1.2.0",
|
||||
"graphemer": "^1.4.0",
|
||||
"hyperdown": "^2.4.29",
|
||||
"immer": "^9.0.19",
|
||||
|
8
pnpm-lock.yaml
generated
8
pnpm-lock.yaml
generated
@@ -33,7 +33,6 @@ specifiers:
|
||||
eventsource-parser: ^0.1.0
|
||||
formidable: ^2.1.1
|
||||
framer-motion: ^9.0.6
|
||||
gpt-token-utils: ^1.2.0
|
||||
graphemer: ^1.4.0
|
||||
husky: ^8.0.3
|
||||
hyperdown: ^2.4.29
|
||||
@@ -86,7 +85,6 @@ dependencies:
|
||||
eventsource-parser: registry.npmmirror.com/eventsource-parser/0.1.0
|
||||
formidable: registry.npmmirror.com/formidable/2.1.1
|
||||
framer-motion: registry.npmmirror.com/framer-motion/9.0.6_biqbaboplfbrettd7655fr4n2y
|
||||
gpt-token-utils: registry.npmmirror.com/gpt-token-utils/1.2.0
|
||||
graphemer: registry.npmmirror.com/graphemer/1.4.0
|
||||
hyperdown: registry.npmmirror.com/hyperdown/2.4.29
|
||||
immer: registry.npmmirror.com/immer/9.0.19
|
||||
@@ -7668,12 +7666,6 @@ packages:
|
||||
get-intrinsic: registry.npmmirror.com/get-intrinsic/1.2.0
|
||||
dev: true
|
||||
|
||||
registry.npmmirror.com/gpt-token-utils/1.2.0:
|
||||
resolution: {integrity: sha512-s8twaU38UE2Vp65JhQEjz8qvWhWY8KZYvmvYHapxlPT03Ok35Clq+gm9eE27wQILdFisseMVRSiC5lJR9GBklA==, registry: https://registry.npm.taobao.org/, tarball: https://registry.npmmirror.com/gpt-token-utils/-/gpt-token-utils-1.2.0.tgz}
|
||||
name: gpt-token-utils
|
||||
version: 1.2.0
|
||||
dev: false
|
||||
|
||||
registry.npmmirror.com/graceful-fs/4.2.10:
|
||||
resolution: {integrity: sha512-9ByhssR2fPVsNZj478qUUbKfmL0+t5BDVyjShtyZZLiK7ZDAArFFfopyOTj0M05wE2tJPisA4iTnnXl2YoPvOA==, registry: https://registry.npm.taobao.org/, tarball: https://registry.npmmirror.com/graceful-fs/-/graceful-fs-4.2.10.tgz}
|
||||
name: graceful-fs
|
||||
|
@@ -5,24 +5,28 @@ export enum ModelDataStatusEnum {
|
||||
waiting = 'waiting'
|
||||
}
|
||||
|
||||
export enum ChatModelNameEnum {
|
||||
GPT35 = 'gpt-3.5-turbo',
|
||||
VECTOR_GPT = 'VECTOR_GPT',
|
||||
VECTOR = 'text-embedding-ada-002'
|
||||
export const embeddingModel = 'text-embedding-ada-002';
|
||||
export enum ChatModelEnum {
|
||||
'GPT35' = 'gpt-3.5-turbo',
|
||||
'GPT4' = 'gpt-4',
|
||||
'GPT432k' = 'gpt-4-32k'
|
||||
}
|
||||
|
||||
export const ChatModelNameMap = {
|
||||
[ChatModelNameEnum.GPT35]: 'gpt-3.5-turbo',
|
||||
[ChatModelNameEnum.VECTOR_GPT]: 'gpt-3.5-turbo',
|
||||
[ChatModelNameEnum.VECTOR]: 'text-embedding-ada-002'
|
||||
export enum ModelNameEnum {
|
||||
GPT35 = 'gpt-3.5-turbo',
|
||||
VECTOR_GPT = 'VECTOR_GPT'
|
||||
}
|
||||
|
||||
export const Model2ChatModelMap: Record<`${ModelNameEnum}`, `${ChatModelEnum}`> = {
|
||||
[ModelNameEnum.GPT35]: 'gpt-3.5-turbo',
|
||||
[ModelNameEnum.VECTOR_GPT]: 'gpt-3.5-turbo'
|
||||
};
|
||||
|
||||
export type ModelConstantsData = {
|
||||
icon: 'model' | 'dbModel';
|
||||
name: string;
|
||||
model: `${ChatModelNameEnum}`;
|
||||
model: `${ModelNameEnum}`;
|
||||
trainName: string; // 空字符串代表不能训练
|
||||
maxToken: number;
|
||||
contextMaxToken: number;
|
||||
maxTemperature: number;
|
||||
price: number; // 多少钱 / 1token,单位: 0.00001元
|
||||
@@ -32,20 +36,18 @@ export const modelList: ModelConstantsData[] = [
|
||||
{
|
||||
icon: 'model',
|
||||
name: 'chatGPT',
|
||||
model: ChatModelNameEnum.GPT35,
|
||||
model: ModelNameEnum.GPT35,
|
||||
trainName: '',
|
||||
maxToken: 4000,
|
||||
contextMaxToken: 7000,
|
||||
contextMaxToken: 4096,
|
||||
maxTemperature: 1.5,
|
||||
price: 3
|
||||
},
|
||||
{
|
||||
icon: 'dbModel',
|
||||
name: '知识库',
|
||||
model: ChatModelNameEnum.VECTOR_GPT,
|
||||
model: ModelNameEnum.VECTOR_GPT,
|
||||
trainName: 'vector',
|
||||
maxToken: 4000,
|
||||
contextMaxToken: 7000,
|
||||
contextMaxToken: 4096,
|
||||
maxTemperature: 1,
|
||||
price: 3
|
||||
}
|
||||
@@ -133,8 +135,8 @@ export const defaultModel: ModelSchema = {
|
||||
},
|
||||
service: {
|
||||
trainId: '',
|
||||
chatModel: ChatModelNameEnum.GPT35,
|
||||
modelName: ChatModelNameEnum.GPT35
|
||||
chatModel: ModelNameEnum.GPT35,
|
||||
modelName: ModelNameEnum.GPT35
|
||||
},
|
||||
security: {
|
||||
domain: ['*'],
|
||||
|
@@ -2,7 +2,6 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { getOpenAIApi, authChat } from '@/service/utils/auth';
|
||||
import { httpsAgent, openaiChatFilter } from '@/service/utils/tools';
|
||||
import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { PassThrough } from 'stream';
|
||||
@@ -64,42 +63,23 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
}
|
||||
|
||||
// 控制在 tokens 数量,防止超出
|
||||
const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken);
|
||||
|
||||
// 格式化文本内容成 chatgpt 格式
|
||||
const map = {
|
||||
Human: ChatCompletionRequestMessageRoleEnum.User,
|
||||
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
|
||||
};
|
||||
const formatPrompts: ChatCompletionRequestMessage[] = filterPrompts.map(
|
||||
(item: ChatItemType) => ({
|
||||
role: map[item.obj],
|
||||
content: item.value
|
||||
})
|
||||
);
|
||||
const filterPrompts = openaiChatFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts,
|
||||
maxTokens: modelConstantsData.contextMaxToken - 500
|
||||
});
|
||||
|
||||
// 计算温度
|
||||
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
|
||||
// console.log({
|
||||
// model: model.service.chatModel,
|
||||
// temperature: temperature,
|
||||
// // max_tokens: modelConstantsData.maxToken,
|
||||
// messages: formatPrompts,
|
||||
// frequency_penalty: 0.5, // 越大,重复内容越少
|
||||
// presence_penalty: -0.5, // 越大,越容易出现新内容
|
||||
// stream: true,
|
||||
// stop: ['.!?。']
|
||||
// });
|
||||
// console.log(filterPrompts);
|
||||
// 获取 chatAPI
|
||||
const chatAPI = getOpenAIApi(userApiKey || systemKey);
|
||||
// 发出请求
|
||||
const chatResponse = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: model.service.chatModel,
|
||||
temperature: temperature,
|
||||
// max_tokens: modelConstantsData.maxToken,
|
||||
messages: formatPrompts,
|
||||
temperature,
|
||||
messages: filterPrompts,
|
||||
frequency_penalty: 0.5, // 越大,重复内容越少
|
||||
presence_penalty: -0.5, // 越大,越容易出现新内容
|
||||
stream: true,
|
||||
@@ -121,7 +101,6 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
stream,
|
||||
chatResponse
|
||||
});
|
||||
const promptsContent = formatPrompts.map((item) => item.content).join('');
|
||||
|
||||
// 只有使用平台的 key 才计费
|
||||
pushChatBill({
|
||||
@@ -129,7 +108,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
modelName: model.service.modelName,
|
||||
userId,
|
||||
chatId,
|
||||
text: promptsContent + responseContent
|
||||
messages: filterPrompts.concat({ role: 'assistant', content: responseContent })
|
||||
});
|
||||
} catch (err: any) {
|
||||
if (step === 1) {
|
||||
|
@@ -2,10 +2,8 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { authChat } from '@/service/utils/auth';
|
||||
import { httpsAgent, systemPromptFilter, openaiChatFilter } from '@/service/utils/tools';
|
||||
import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import type { ModelSchema } from '@/types/mongoSchema';
|
||||
import { PassThrough } from 'stream';
|
||||
import {
|
||||
modelList,
|
||||
@@ -105,9 +103,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
value: model.systemPrompt
|
||||
});
|
||||
} else {
|
||||
// 有匹配情况下,添加知识库内容。
|
||||
// 系统提示词过滤,最多 3000 tokens
|
||||
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3000);
|
||||
// 有匹配情况下,system 添加知识库内容。
|
||||
// 系统提示词过滤,最多 2500 tokens
|
||||
const systemPrompt = systemPromptFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts: formatRedisPrompt,
|
||||
maxTokens: 2500
|
||||
});
|
||||
|
||||
prompts.unshift({
|
||||
obj: 'SYSTEM',
|
||||
@@ -124,21 +126,13 @@ ${
|
||||
}
|
||||
|
||||
// 控制在 tokens 数量,防止超出
|
||||
const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken);
|
||||
const filterPrompts = openaiChatFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts,
|
||||
maxTokens: modelConstantsData.contextMaxToken - 500
|
||||
});
|
||||
|
||||
// 格式化文本内容成 chatgpt 格式
|
||||
const map = {
|
||||
Human: ChatCompletionRequestMessageRoleEnum.User,
|
||||
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
|
||||
};
|
||||
const formatPrompts: ChatCompletionRequestMessage[] = filterPrompts.map(
|
||||
(item: ChatItemType) => ({
|
||||
role: map[item.obj],
|
||||
content: item.value
|
||||
})
|
||||
);
|
||||
// console.log(formatPrompts);
|
||||
// console.log(filterPrompts);
|
||||
// 计算温度
|
||||
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
|
||||
|
||||
@@ -146,9 +140,8 @@ ${
|
||||
const chatResponse = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: model.service.chatModel,
|
||||
temperature: temperature,
|
||||
// max_tokens: modelConstantsData.maxToken,
|
||||
messages: formatPrompts,
|
||||
temperature,
|
||||
messages: filterPrompts,
|
||||
frequency_penalty: 0.5, // 越大,重复内容越少
|
||||
presence_penalty: -0.5, // 越大,越容易出现新内容
|
||||
stream: true
|
||||
@@ -170,14 +163,13 @@ ${
|
||||
chatResponse
|
||||
});
|
||||
|
||||
const promptsContent = formatPrompts.map((item) => item.content).join('');
|
||||
// 只有使用平台的 key 才计费
|
||||
pushChatBill({
|
||||
isPay: !userApiKey,
|
||||
modelName: model.service.modelName,
|
||||
userId,
|
||||
chatId,
|
||||
text: promptsContent + responseContent
|
||||
messages: filterPrompts.concat({ role: 'assistant', content: responseContent })
|
||||
});
|
||||
// jsonRes(res);
|
||||
} catch (err: any) {
|
||||
|
@@ -4,7 +4,7 @@ import { connectToDatabase, DataItem, Data } from '@/service/mongo';
|
||||
import { authToken } from '@/service/utils/tools';
|
||||
import { generateQA } from '@/service/events/generateQA';
|
||||
import { generateAbstract } from '@/service/events/generateAbstract';
|
||||
import { encode } from 'gpt-token-utils';
|
||||
import { countChatTokens } from '@/utils/tools';
|
||||
|
||||
/* 拆分数据成QA */
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse) {
|
||||
@@ -34,7 +34,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
|
||||
chunks.forEach((chunk) => {
|
||||
splitText += chunk;
|
||||
const tokens = encode(splitText).length;
|
||||
const tokens = countChatTokens({ messages: [{ role: 'system', content: splitText }] });
|
||||
if (tokens >= 780) {
|
||||
dataItems.push({
|
||||
userId,
|
||||
|
@@ -3,14 +3,14 @@ import type { NextApiRequest, NextApiResponse } from 'next';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { connectToDatabase } from '@/service/mongo';
|
||||
import { authToken } from '@/service/utils/tools';
|
||||
import { ModelStatusEnum, modelList, ChatModelNameEnum, ChatModelNameMap } from '@/constants/model';
|
||||
import { ModelStatusEnum, modelList, ModelNameEnum, Model2ChatModelMap } from '@/constants/model';
|
||||
import { Model } from '@/service/models/model';
|
||||
|
||||
export default async function handler(req: NextApiRequest, res: NextApiResponse<any>) {
|
||||
try {
|
||||
const { name, serviceModelName } = req.body as {
|
||||
name: string;
|
||||
serviceModelName: `${ChatModelNameEnum}`;
|
||||
serviceModelName: `${ModelNameEnum}`;
|
||||
};
|
||||
const { authorization } = req.headers;
|
||||
|
||||
@@ -48,7 +48,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse<
|
||||
status: ModelStatusEnum.running,
|
||||
service: {
|
||||
trainId: '',
|
||||
chatModel: ChatModelNameMap[modelItem.model], // 聊天时用的模型
|
||||
chatModel: Model2ChatModelMap[modelItem.model], // 聊天时用的模型
|
||||
modelName: modelItem.model // 最底层的模型,不会变,用于计费等核心操作
|
||||
}
|
||||
});
|
||||
|
@@ -75,21 +75,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
}
|
||||
|
||||
// 控制在 tokens 数量,防止超出
|
||||
const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken);
|
||||
const filterPrompts = openaiChatFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts,
|
||||
maxTokens: modelConstantsData.contextMaxToken - 500
|
||||
});
|
||||
|
||||
// 格式化文本内容成 chatgpt 格式
|
||||
const map = {
|
||||
Human: ChatCompletionRequestMessageRoleEnum.User,
|
||||
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
|
||||
};
|
||||
const formatPrompts: ChatCompletionRequestMessage[] = filterPrompts.map(
|
||||
(item: ChatItemType) => ({
|
||||
role: map[item.obj],
|
||||
content: item.value
|
||||
})
|
||||
);
|
||||
// console.log(formatPrompts);
|
||||
// console.log(filterPrompts);
|
||||
// 计算温度
|
||||
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
|
||||
|
||||
@@ -99,9 +91,8 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
const chatResponse = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: model.service.chatModel,
|
||||
temperature: temperature,
|
||||
// max_tokens: modelConstantsData.maxToken,
|
||||
messages: formatPrompts,
|
||||
temperature,
|
||||
messages: filterPrompts,
|
||||
frequency_penalty: 0.5, // 越大,重复内容越少
|
||||
presence_penalty: -0.5, // 越大,越容易出现新内容
|
||||
stream: isStream,
|
||||
@@ -133,14 +124,12 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
});
|
||||
}
|
||||
|
||||
const promptsContent = formatPrompts.map((item) => item.content).join('');
|
||||
|
||||
// 只有使用平台的 key 才计费
|
||||
pushChatBill({
|
||||
isPay: true,
|
||||
modelName: model.service.modelName,
|
||||
userId,
|
||||
text: promptsContent + responseContent
|
||||
messages: filterPrompts.concat({ role: 'assistant', content: responseContent })
|
||||
});
|
||||
} catch (err: any) {
|
||||
if (step === 1) {
|
||||
|
@@ -3,15 +3,14 @@ import { connectToDatabase, Model } from '@/service/mongo';
|
||||
import { getOpenAIApi } from '@/service/utils/auth';
|
||||
import { authOpenApiKey } from '@/service/utils/tools';
|
||||
import { httpsAgent, openaiChatFilter, systemPromptFilter } from '@/service/utils/tools';
|
||||
import { ChatCompletionRequestMessage, ChatCompletionRequestMessageRoleEnum } from 'openai';
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { jsonRes } from '@/service/response';
|
||||
import { PassThrough } from 'stream';
|
||||
import {
|
||||
ChatModelNameEnum,
|
||||
ModelNameEnum,
|
||||
modelList,
|
||||
ChatModelNameMap,
|
||||
ModelVectorSearchModeMap
|
||||
ModelVectorSearchModeMap,
|
||||
ChatModelEnum
|
||||
} from '@/constants/model';
|
||||
import { pushChatBill } from '@/service/events/pushBill';
|
||||
import { openaiCreateEmbedding, gpt35StreamResponse } from '@/service/utils/openai';
|
||||
@@ -60,9 +59,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
throw new Error('找不到模型');
|
||||
}
|
||||
|
||||
const modelConstantsData = modelList.find(
|
||||
(item) => item.model === ChatModelNameEnum.VECTOR_GPT
|
||||
);
|
||||
const modelConstantsData = modelList.find((item) => item.model === ModelNameEnum.VECTOR_GPT);
|
||||
if (!modelConstantsData) {
|
||||
throw new Error('模型已下架');
|
||||
}
|
||||
@@ -74,7 +71,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
// 请求一次 chatgpt 拆解需求
|
||||
const promptResponse = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: ChatModelNameMap[ChatModelNameEnum.GPT35],
|
||||
model: ChatModelEnum.GPT35,
|
||||
temperature: 0,
|
||||
frequency_penalty: 0.5, // 越大,重复内容越少
|
||||
presence_penalty: -0.5, // 越大,越容易出现新内容
|
||||
@@ -122,7 +119,7 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
]
|
||||
},
|
||||
{
|
||||
timeout: 120000,
|
||||
timeout: 180000,
|
||||
httpsAgent: httpsAgent(true)
|
||||
}
|
||||
);
|
||||
@@ -163,30 +160,26 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
|
||||
const formatRedisPrompt: string[] = vectorSearch.rows.map((item) => `${item.q}\n${item.a}`);
|
||||
|
||||
// textArr 筛选,最多 2500 tokens
|
||||
const systemPrompt = systemPromptFilter(formatRedisPrompt, 2500);
|
||||
// system 筛选,最多 2500 tokens
|
||||
const systemPrompt = systemPromptFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts: formatRedisPrompt,
|
||||
maxTokens: 2500
|
||||
});
|
||||
|
||||
prompts.unshift({
|
||||
obj: 'SYSTEM',
|
||||
value: `${model.systemPrompt} 知识库是最新的,下面是知识库内容:${systemPrompt}`
|
||||
});
|
||||
|
||||
// 控制在 tokens 数量,防止超出
|
||||
const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken);
|
||||
// 控制上下文 tokens 数量,防止超出
|
||||
const filterPrompts = openaiChatFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts,
|
||||
maxTokens: modelConstantsData.contextMaxToken - 500
|
||||
});
|
||||
|
||||
// 格式化文本内容成 chatgpt 格式
|
||||
const map = {
|
||||
Human: ChatCompletionRequestMessageRoleEnum.User,
|
||||
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
|
||||
};
|
||||
const formatPrompts: ChatCompletionRequestMessage[] = filterPrompts.map(
|
||||
(item: ChatItemType) => ({
|
||||
role: map[item.obj],
|
||||
content: item.value
|
||||
})
|
||||
);
|
||||
// console.log(formatPrompts);
|
||||
// console.log(filterPrompts);
|
||||
// 计算温度
|
||||
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
|
||||
|
||||
@@ -195,13 +188,13 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
{
|
||||
model: model.service.chatModel,
|
||||
temperature,
|
||||
messages: formatPrompts,
|
||||
messages: filterPrompts,
|
||||
frequency_penalty: 0.5, // 越大,重复内容越少
|
||||
presence_penalty: -0.5, // 越大,越容易出现新内容
|
||||
stream: isStream
|
||||
},
|
||||
{
|
||||
timeout: 120000,
|
||||
timeout: 180000,
|
||||
responseType: isStream ? 'stream' : 'json',
|
||||
httpsAgent: httpsAgent(true)
|
||||
}
|
||||
@@ -228,13 +221,11 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
|
||||
console.log('laf gpt done. time:', `${(Date.now() - startTime) / 1000}s`);
|
||||
|
||||
const promptsContent = formatPrompts.map((item) => item.content).join('');
|
||||
|
||||
pushChatBill({
|
||||
isPay: true,
|
||||
modelName: model.service.modelName,
|
||||
userId,
|
||||
text: promptsContent + responseContent
|
||||
messages: filterPrompts.concat({ role: 'assistant', content: responseContent })
|
||||
});
|
||||
} catch (err: any) {
|
||||
if (step === 1) {
|
||||
|
@@ -126,8 +126,12 @@ export default async function handler(req: NextApiRequest, res: NextApiResponse)
|
||||
});
|
||||
} else {
|
||||
// 有匹配或者低匹配度模式情况下,添加知识库内容。
|
||||
// 系统提示词过滤,最多 3000 tokens
|
||||
const systemPrompt = systemPromptFilter(formatRedisPrompt, 3000);
|
||||
// 系统提示词过滤,最多 2500 tokens
|
||||
const systemPrompt = systemPromptFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts: formatRedisPrompt,
|
||||
maxTokens: 2500
|
||||
});
|
||||
|
||||
prompts.unshift({
|
||||
obj: 'SYSTEM',
|
||||
@@ -144,21 +148,13 @@ ${
|
||||
}
|
||||
|
||||
// 控制在 tokens 数量,防止超出
|
||||
const filterPrompts = openaiChatFilter(prompts, modelConstantsData.contextMaxToken);
|
||||
const filterPrompts = openaiChatFilter({
|
||||
model: model.service.chatModel,
|
||||
prompts,
|
||||
maxTokens: modelConstantsData.contextMaxToken - 500
|
||||
});
|
||||
|
||||
// 格式化文本内容成 chatgpt 格式
|
||||
const map = {
|
||||
Human: ChatCompletionRequestMessageRoleEnum.User,
|
||||
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
|
||||
};
|
||||
const formatPrompts: ChatCompletionRequestMessage[] = filterPrompts.map(
|
||||
(item: ChatItemType) => ({
|
||||
role: map[item.obj],
|
||||
content: item.value
|
||||
})
|
||||
);
|
||||
// console.log(formatPrompts);
|
||||
// console.log(filterPrompts);
|
||||
// 计算温度
|
||||
const temperature = modelConstantsData.maxTemperature * (model.temperature / 10);
|
||||
|
||||
@@ -166,14 +162,14 @@ ${
|
||||
const chatResponse = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: model.service.chatModel,
|
||||
temperature: temperature,
|
||||
messages: formatPrompts,
|
||||
temperature,
|
||||
messages: filterPrompts,
|
||||
frequency_penalty: 0.5, // 越大,重复内容越少
|
||||
presence_penalty: -0.5, // 越大,越容易出现新内容
|
||||
stream: isStream
|
||||
},
|
||||
{
|
||||
timeout: 120000,
|
||||
timeout: 180000,
|
||||
responseType: isStream ? 'stream' : 'json',
|
||||
httpsAgent: httpsAgent(true)
|
||||
}
|
||||
@@ -198,12 +194,11 @@ ${
|
||||
});
|
||||
}
|
||||
|
||||
const promptsContent = formatPrompts.map((item) => item.content).join('');
|
||||
pushChatBill({
|
||||
isPay: true,
|
||||
modelName: model.service.modelName,
|
||||
userId,
|
||||
text: promptsContent + responseContent
|
||||
messages: filterPrompts.concat({ role: 'assistant', content: responseContent })
|
||||
});
|
||||
// jsonRes(res);
|
||||
} catch (err: any) {
|
||||
|
@@ -21,7 +21,7 @@ import {
|
||||
import { useToast } from '@/hooks/useToast';
|
||||
import { useScreen } from '@/hooks/useScreen';
|
||||
import { useQuery } from '@tanstack/react-query';
|
||||
import { ChatModelNameEnum } from '@/constants/model';
|
||||
import { ModelNameEnum } from '@/constants/model';
|
||||
import dynamic from 'next/dynamic';
|
||||
import { useGlobalStore } from '@/store/global';
|
||||
import { useCopyData } from '@/utils/tools';
|
||||
@@ -178,8 +178,8 @@ const Chat = ({ modelId, chatId }: { modelId: string; chatId: string }) => {
|
||||
const gptChatPrompt = useCallback(
|
||||
async (prompts: ChatSiteItemType) => {
|
||||
const urlMap: Record<string, string> = {
|
||||
[ChatModelNameEnum.GPT35]: '/api/chat/chatGpt',
|
||||
[ChatModelNameEnum.VECTOR_GPT]: '/api/chat/vectorGpt'
|
||||
[ModelNameEnum.GPT35]: '/api/chat/chatGpt',
|
||||
[ModelNameEnum.VECTOR_GPT]: '/api/chat/vectorGpt'
|
||||
};
|
||||
|
||||
if (!urlMap[chatData.modelName]) return Promise.reject('找不到模型');
|
||||
|
@@ -1,97 +0,0 @@
|
||||
import React, { useState } from 'react';
|
||||
import {
|
||||
Modal,
|
||||
ModalOverlay,
|
||||
ModalContent,
|
||||
ModalHeader,
|
||||
ModalFooter,
|
||||
ModalBody,
|
||||
ModalCloseButton,
|
||||
Button,
|
||||
Input,
|
||||
Select,
|
||||
FormControl,
|
||||
FormErrorMessage
|
||||
} from '@chakra-ui/react';
|
||||
import { postData } from '@/api/data';
|
||||
import { useMutation } from '@tanstack/react-query';
|
||||
import { useForm, SubmitHandler } from 'react-hook-form';
|
||||
import { DataType } from '@/types/data';
|
||||
import { DataTypeTextMap } from '@/constants/data';
|
||||
|
||||
export interface CreateDataProps {
|
||||
name: string;
|
||||
type: DataType;
|
||||
}
|
||||
|
||||
const CreateDataModal = ({
|
||||
onClose,
|
||||
onSuccess
|
||||
}: {
|
||||
onClose: () => void;
|
||||
onSuccess: () => void;
|
||||
}) => {
|
||||
const [inputVal, setInputVal] = useState('');
|
||||
const {
|
||||
getValues,
|
||||
register,
|
||||
handleSubmit,
|
||||
formState: { errors }
|
||||
} = useForm<CreateDataProps>({
|
||||
defaultValues: {
|
||||
name: '',
|
||||
type: 'abstract'
|
||||
}
|
||||
});
|
||||
|
||||
const { isLoading, mutate } = useMutation({
|
||||
mutationFn: (e: CreateDataProps) => postData(e),
|
||||
onSuccess() {
|
||||
onSuccess();
|
||||
onClose();
|
||||
}
|
||||
});
|
||||
|
||||
return (
|
||||
<Modal isOpen={true} onClose={onClose}>
|
||||
<ModalOverlay />
|
||||
<ModalContent>
|
||||
<ModalHeader>创建数据集</ModalHeader>
|
||||
<ModalCloseButton />
|
||||
|
||||
<ModalBody>
|
||||
<FormControl mb={8} isInvalid={!!errors.name}>
|
||||
<Input
|
||||
placeholder="数据集名称"
|
||||
{...register('name', {
|
||||
required: '数据集名称不能为空'
|
||||
})}
|
||||
/>
|
||||
<FormErrorMessage position={'absolute'} fontSize="xs">
|
||||
{!!errors.name && errors.name.message}
|
||||
</FormErrorMessage>
|
||||
</FormControl>
|
||||
<FormControl>
|
||||
<Select placeholder="数据集类型" {...register('type', {})}>
|
||||
{Object.entries(DataTypeTextMap).map(([key, value]) => (
|
||||
<option key={key} value={key}>
|
||||
{value}
|
||||
</option>
|
||||
))}
|
||||
</Select>
|
||||
</FormControl>
|
||||
</ModalBody>
|
||||
<ModalFooter>
|
||||
<Button colorScheme={'gray'} onClick={onClose}>
|
||||
取消
|
||||
</Button>
|
||||
<Button ml={3} isLoading={isLoading} onClick={handleSubmit(mutate as any)}>
|
||||
确认
|
||||
</Button>
|
||||
</ModalFooter>
|
||||
</ModalContent>
|
||||
</Modal>
|
||||
);
|
||||
};
|
||||
|
||||
export default CreateDataModal;
|
@@ -1,229 +0,0 @@
|
||||
import React, { useState, useCallback } from 'react';
|
||||
import {
|
||||
Modal,
|
||||
ModalOverlay,
|
||||
ModalContent,
|
||||
ModalHeader,
|
||||
ModalFooter,
|
||||
ModalBody,
|
||||
ModalCloseButton,
|
||||
Button,
|
||||
Box,
|
||||
Flex,
|
||||
Textarea
|
||||
} from '@chakra-ui/react';
|
||||
import { useTabs } from '@/hooks/useTabs';
|
||||
import { useConfirm } from '@/hooks/useConfirm';
|
||||
import { useSelectFile } from '@/hooks/useSelectFile';
|
||||
import { readTxtContent, readPdfContent, readDocContent } from '@/utils/file';
|
||||
import { postSplitData } from '@/api/data';
|
||||
import { useMutation } from '@tanstack/react-query';
|
||||
import { useToast } from '@/hooks/useToast';
|
||||
import { useLoading } from '@/hooks/useLoading';
|
||||
import { formatPrice } from '@/utils/user';
|
||||
import { modelList, ChatModelNameEnum } from '@/constants/model';
|
||||
import { encode } from 'gpt-token-utils';
|
||||
|
||||
const fileExtension = '.txt,.doc,.docx,.pdf,.md';
|
||||
|
||||
const ImportDataModal = ({
|
||||
dataId,
|
||||
onClose,
|
||||
onSuccess
|
||||
}: {
|
||||
dataId: string;
|
||||
onClose: () => void;
|
||||
onSuccess: () => void;
|
||||
}) => {
|
||||
const { openConfirm, ConfirmChild } = useConfirm({
|
||||
content: '确认提交生成任务?该任务无法终止!'
|
||||
});
|
||||
const { toast } = useToast();
|
||||
const { setIsLoading, Loading } = useLoading();
|
||||
const { File, onOpen } = useSelectFile({ fileType: fileExtension, multiple: true });
|
||||
const { tabs, activeTab, setActiveTab } = useTabs({
|
||||
tabs: [
|
||||
{ id: 'text', label: '文本' },
|
||||
{ id: 'doc', label: '文件' }
|
||||
// { id: 'url', label: '链接' }
|
||||
]
|
||||
});
|
||||
|
||||
const [textInput, setTextInput] = useState('');
|
||||
const [fileText, setFileText] = useState('');
|
||||
|
||||
const { mutate: handleClickSubmit, isLoading } = useMutation({
|
||||
mutationFn: async () => {
|
||||
let text = '';
|
||||
if (activeTab === 'text') {
|
||||
text = textInput;
|
||||
} else if (activeTab === 'doc') {
|
||||
text = fileText;
|
||||
} else if (activeTab === 'url') {
|
||||
}
|
||||
if (!text) return;
|
||||
return postSplitData(dataId, text);
|
||||
},
|
||||
onSuccess() {
|
||||
toast({
|
||||
title: '任务提交成功',
|
||||
status: 'success'
|
||||
});
|
||||
onClose();
|
||||
onSuccess();
|
||||
},
|
||||
onError(err: any) {
|
||||
toast({
|
||||
title: err?.message || '提交任务异常',
|
||||
status: 'error'
|
||||
});
|
||||
}
|
||||
});
|
||||
|
||||
const onSelectFile = useCallback(
|
||||
async (e: File[]) => {
|
||||
setIsLoading(true);
|
||||
try {
|
||||
const fileTexts = (
|
||||
await Promise.all(
|
||||
e.map((file) => {
|
||||
// @ts-ignore
|
||||
const extension = file?.name?.split('.').pop().toLowerCase();
|
||||
switch (extension) {
|
||||
case 'txt':
|
||||
case 'md':
|
||||
return readTxtContent(file);
|
||||
case 'pdf':
|
||||
return readPdfContent(file);
|
||||
case 'doc':
|
||||
case 'docx':
|
||||
return readDocContent(file);
|
||||
default:
|
||||
return '';
|
||||
}
|
||||
})
|
||||
)
|
||||
)
|
||||
.join('\n')
|
||||
.replace(/\n+/g, '\n');
|
||||
setFileText(fileTexts);
|
||||
console.log(encode(fileTexts));
|
||||
} catch (error: any) {
|
||||
console.log(error);
|
||||
toast({
|
||||
title: typeof error === 'string' ? error : '解析文件失败',
|
||||
status: 'error'
|
||||
});
|
||||
}
|
||||
setIsLoading(false);
|
||||
},
|
||||
[setIsLoading, toast]
|
||||
);
|
||||
|
||||
return (
|
||||
<Modal isOpen={true} onClose={onClose}>
|
||||
<ModalOverlay />
|
||||
<ModalContent position={'relative'} maxW={['90vw', '800px']}>
|
||||
<ModalHeader>
|
||||
导入数据,生成QA
|
||||
<Box ml={2} as={'span'} fontSize={'sm'} color={'blackAlpha.600'}>
|
||||
{formatPrice(
|
||||
modelList.find((item) => item.model === ChatModelNameEnum.GPT35)?.price || 0,
|
||||
1000
|
||||
)}
|
||||
元/1K tokens
|
||||
</Box>
|
||||
</ModalHeader>
|
||||
<ModalCloseButton />
|
||||
|
||||
<ModalBody display={'flex'}>
|
||||
<Box>
|
||||
{tabs.map((item) => (
|
||||
<Button
|
||||
key={item.id}
|
||||
display={'block'}
|
||||
variant={activeTab === item.id ? 'solid' : 'outline'}
|
||||
_notLast={{
|
||||
mb: 3
|
||||
}}
|
||||
onClick={() => setActiveTab(item.id)}
|
||||
>
|
||||
{item.label}
|
||||
</Button>
|
||||
))}
|
||||
</Box>
|
||||
|
||||
<Box flex={'1 0 0'} w={0} ml={3} minH={'200px'}>
|
||||
{activeTab === 'text' && (
|
||||
<>
|
||||
<Textarea
|
||||
h={'100%'}
|
||||
maxLength={-1}
|
||||
value={textInput}
|
||||
placeholder={'请粘贴或输入需要处理的文本'}
|
||||
onChange={(e) => setTextInput(e.target.value)}
|
||||
/>
|
||||
<Box mt={2}>
|
||||
一共 {textInput.length} 个字,{encode(textInput).length} 个tokens
|
||||
</Box>
|
||||
</>
|
||||
)}
|
||||
{activeTab === 'doc' && (
|
||||
<Flex
|
||||
flexDirection={'column'}
|
||||
p={2}
|
||||
h={'100%'}
|
||||
alignItems={'center'}
|
||||
justifyContent={'center'}
|
||||
border={'1px solid '}
|
||||
borderColor={'blackAlpha.200'}
|
||||
borderRadius={'md'}
|
||||
fontSize={'sm'}
|
||||
>
|
||||
<Button onClick={onOpen}>选择文件</Button>
|
||||
<Box mt={2}>支持 {fileExtension} 文件</Box>
|
||||
{fileText && (
|
||||
<>
|
||||
<Box mt={2}>
|
||||
一共 {fileText.length} 个字,{encode(fileText).length} 个tokens
|
||||
</Box>
|
||||
<Box
|
||||
maxH={'300px'}
|
||||
w={'100%'}
|
||||
overflow={'auto'}
|
||||
p={2}
|
||||
backgroundColor={'blackAlpha.50'}
|
||||
whiteSpace={'pre'}
|
||||
fontSize={'xs'}
|
||||
>
|
||||
{fileText}
|
||||
</Box>
|
||||
</>
|
||||
)}
|
||||
</Flex>
|
||||
)}
|
||||
</Box>
|
||||
</ModalBody>
|
||||
<ModalFooter>
|
||||
<Button colorScheme={'gray'} onClick={onClose}>
|
||||
取消
|
||||
</Button>
|
||||
<Button
|
||||
ml={3}
|
||||
isLoading={isLoading}
|
||||
isDisabled={!textInput && !fileText}
|
||||
onClick={openConfirm(handleClickSubmit)}
|
||||
>
|
||||
确认
|
||||
</Button>
|
||||
</ModalFooter>
|
||||
<Loading />
|
||||
</ModalContent>
|
||||
|
||||
<ConfirmChild />
|
||||
<File onSelect={onSelectFile} />
|
||||
</Modal>
|
||||
);
|
||||
};
|
||||
|
||||
export default ImportDataModal;
|
@@ -1,67 +0,0 @@
|
||||
import React from 'react';
|
||||
import { Box, Card } from '@chakra-ui/react';
|
||||
import ScrollData from '@/components/ScrollData';
|
||||
import { getDataItems } from '@/api/data';
|
||||
import { usePaging } from '@/hooks/usePaging';
|
||||
import type { DataItemSchema } from '@/types/mongoSchema';
|
||||
|
||||
const DataDetail = ({ dataName, dataId }: { dataName: string; dataId: string }) => {
|
||||
const {
|
||||
nextPage,
|
||||
isLoadAll,
|
||||
requesting,
|
||||
data: dataItems
|
||||
} = usePaging<DataItemSchema>({
|
||||
api: getDataItems,
|
||||
pageSize: 10,
|
||||
params: {
|
||||
dataId
|
||||
}
|
||||
});
|
||||
|
||||
return (
|
||||
<Card py={4} h={'100%'} display={'flex'} flexDirection={'column'}>
|
||||
<Box px={6} fontSize={'xl'} fontWeight={'bold'}>
|
||||
{dataName} 结果
|
||||
</Box>
|
||||
<ScrollData
|
||||
flex={'1 0 0'}
|
||||
h={0}
|
||||
px={6}
|
||||
mt={3}
|
||||
isLoadAll={isLoadAll}
|
||||
requesting={requesting}
|
||||
nextPage={nextPage}
|
||||
fontSize={'xs'}
|
||||
whiteSpace={'pre-wrap'}
|
||||
>
|
||||
{dataItems.map((item) => (
|
||||
<Box key={item._id}>
|
||||
{item.result.map((result, i) => (
|
||||
<Box key={i} mb={3}>
|
||||
{item.type === 'QA' && (
|
||||
<>
|
||||
<Box fontWeight={'bold'}>Q: {result.q}</Box>
|
||||
<Box>A: {result.a}</Box>
|
||||
</>
|
||||
)}
|
||||
{item.type === 'abstract' && <Box fontSize={'sm'}>{result.abstract}</Box>}
|
||||
</Box>
|
||||
))}
|
||||
</Box>
|
||||
))}
|
||||
</ScrollData>
|
||||
</Card>
|
||||
);
|
||||
};
|
||||
|
||||
export default DataDetail;
|
||||
|
||||
export async function getServerSideProps(context: any) {
|
||||
return {
|
||||
props: {
|
||||
dataName: context.query?.dataName || '',
|
||||
dataId: context.query?.dataId || ''
|
||||
}
|
||||
};
|
||||
}
|
@@ -1,235 +0,0 @@
|
||||
import React, { useState, useCallback } from 'react';
|
||||
import {
|
||||
Card,
|
||||
Box,
|
||||
Flex,
|
||||
Button,
|
||||
Table,
|
||||
Thead,
|
||||
Tbody,
|
||||
Tr,
|
||||
Th,
|
||||
Td,
|
||||
TableContainer,
|
||||
useDisclosure,
|
||||
Input,
|
||||
Menu,
|
||||
MenuButton,
|
||||
MenuList,
|
||||
MenuItem
|
||||
} from '@chakra-ui/react';
|
||||
import { getDataList, updateDataName, delData, getDataItems } from '@/api/data';
|
||||
import type { DataListItem } from '@/types/data';
|
||||
import dayjs from 'dayjs';
|
||||
import dynamic from 'next/dynamic';
|
||||
import { useRouter } from 'next/router';
|
||||
import { useConfirm } from '@/hooks/useConfirm';
|
||||
import { useRequest } from '@/hooks/useRequest';
|
||||
import { DataItemSchema } from '@/types/mongoSchema';
|
||||
import { DataTypeTextMap } from '@/constants/data';
|
||||
import { customAlphabet } from 'nanoid';
|
||||
import { useQuery } from '@tanstack/react-query';
|
||||
const nanoid = customAlphabet('.,', 1);
|
||||
|
||||
const CreateDataModal = dynamic(() => import('./components/CreateDataModal'));
|
||||
const ImportDataModal = dynamic(() => import('./components/ImportDataModal'));
|
||||
|
||||
export type ExportDataType = 'jsonl' | 'txt';
|
||||
|
||||
const DataList = () => {
|
||||
const router = useRouter();
|
||||
const [ImportDataId, setImportDataId] = useState<string>();
|
||||
const { openConfirm, ConfirmChild } = useConfirm({
|
||||
content: '删除数据集,将删除里面的所有内容,请确认!'
|
||||
});
|
||||
|
||||
const {
|
||||
isOpen: isOpenCreateDataModal,
|
||||
onOpen: onOpenCreateDataModal,
|
||||
onClose: onCloseCreateDataModal
|
||||
} = useDisclosure();
|
||||
|
||||
const { data: dataList = [], refetch } = useQuery(['getDataList'], getDataList, {
|
||||
refetchInterval: 10000
|
||||
});
|
||||
|
||||
const { mutate: handleDelData, isLoading: isDeleting } = useRequest({
|
||||
mutationFn: (dataId: string) => delData(dataId),
|
||||
successToast: '删除数据集成功',
|
||||
errorToast: '删除数据集异常',
|
||||
onSuccess() {
|
||||
refetch();
|
||||
}
|
||||
});
|
||||
|
||||
const { mutate: handleExportData, isLoading: isExporting } = useRequest({
|
||||
mutationFn: async ({ data, type }: { data: DataListItem; type: ExportDataType }) => ({
|
||||
type,
|
||||
data: await getDataItems({ dataId: data._id, pageNum: 1, pageSize: data.totalData }).then(
|
||||
(res) => res.data
|
||||
)
|
||||
}),
|
||||
successToast: '导出数据集成功',
|
||||
errorToast: '导出数据集异常',
|
||||
onSuccess(res: { type: ExportDataType; data: DataItemSchema[] }) {
|
||||
// 合并数据
|
||||
const data = res.data.map((item) => item.result).flat();
|
||||
let text = '';
|
||||
// 生成 jsonl
|
||||
data.forEach((item) => {
|
||||
if (res.type === 'jsonl' && item.q && item.a) {
|
||||
const result = JSON.stringify({
|
||||
prompt: `${item.q.toLocaleLowerCase()}${nanoid()}</s>`,
|
||||
completion: ` ${item.a}###`
|
||||
});
|
||||
text += `${result}\n`;
|
||||
} else if (res.type === 'txt' && item.abstract) {
|
||||
text += `${item.abstract}\n`;
|
||||
}
|
||||
});
|
||||
// 去掉最后一个 \n
|
||||
text = text.substring(0, text.length - 1);
|
||||
|
||||
// 导出为文件
|
||||
const blob = new Blob([text], { type: 'application/json;charset=utf-8' });
|
||||
|
||||
// 创建下载链接
|
||||
const downloadLink = document.createElement('a');
|
||||
downloadLink.href = window.URL.createObjectURL(blob);
|
||||
downloadLink.download = `data.${res.type}`;
|
||||
|
||||
// 添加链接到页面并触发下载
|
||||
document.body.appendChild(downloadLink);
|
||||
downloadLink.click();
|
||||
document.body.removeChild(downloadLink);
|
||||
}
|
||||
});
|
||||
|
||||
return (
|
||||
<Box display={['block', 'flex']} flexDirection={'column'} h={'100%'}>
|
||||
<Card px={6} py={4}>
|
||||
<Flex>
|
||||
<Box flex={1} mr={1}>
|
||||
<Box fontSize={'xl'} fontWeight={'bold'}>
|
||||
训练数据管理
|
||||
</Box>
|
||||
<Box fontSize={'xs'} color={'blackAlpha.600'}>
|
||||
允许你将任意文本数据拆分成 QA 形式,或者进行文本摘要总结。
|
||||
</Box>
|
||||
</Box>
|
||||
<Button variant={'outline'} onClick={onOpenCreateDataModal}>
|
||||
创建数据集
|
||||
</Button>
|
||||
</Flex>
|
||||
</Card>
|
||||
{/* 数据表 */}
|
||||
<TableContainer
|
||||
mt={3}
|
||||
flex={'1 0 0'}
|
||||
h={['auto', '0']}
|
||||
overflowY={'auto'}
|
||||
px={6}
|
||||
py={4}
|
||||
backgroundColor={'white'}
|
||||
borderRadius={'md'}
|
||||
boxShadow={'base'}
|
||||
>
|
||||
<Table>
|
||||
<Thead>
|
||||
<Tr>
|
||||
<Th>集合名</Th>
|
||||
<Th>类型</Th>
|
||||
<Th>创建时间</Th>
|
||||
<Th>训练中 / 总数据</Th>
|
||||
<Th></Th>
|
||||
</Tr>
|
||||
</Thead>
|
||||
<Tbody>
|
||||
{dataList.map((item, i) => (
|
||||
<Tr key={item._id}>
|
||||
<Td>
|
||||
<Input
|
||||
minW={'150px'}
|
||||
placeholder="请输入数据集名称"
|
||||
defaultValue={item.name}
|
||||
size={'sm'}
|
||||
onBlur={(e) => {
|
||||
if (!e.target.value || e.target.value === item.name) return;
|
||||
updateDataName(item._id, e.target.value);
|
||||
}}
|
||||
/>
|
||||
</Td>
|
||||
<Td>{DataTypeTextMap[item.type || 'QA']}</Td>
|
||||
<Td>{dayjs(item.createTime).format('YYYY/MM/DD HH:mm')}</Td>
|
||||
<Td>
|
||||
{item.trainingData} / {item.totalData}
|
||||
</Td>
|
||||
<Td>
|
||||
<Button
|
||||
size={'sm'}
|
||||
variant={'outline'}
|
||||
colorScheme={'gray'}
|
||||
mr={2}
|
||||
onClick={() =>
|
||||
router.push(`/data/detail?dataId=${item._id}&dataName=${item.name}`)
|
||||
}
|
||||
>
|
||||
详细
|
||||
</Button>
|
||||
<Button
|
||||
size={'sm'}
|
||||
variant={'outline'}
|
||||
mr={2}
|
||||
onClick={() => setImportDataId(item._id)}
|
||||
>
|
||||
导入
|
||||
</Button>
|
||||
{/* <Menu>
|
||||
<MenuButton as={Button} mr={2} size={'sm'} isLoading={isExporting}>
|
||||
导出
|
||||
</MenuButton>
|
||||
<MenuList>
|
||||
{item.type === 'QA' && (
|
||||
<MenuItem onClick={() => handleExportData({ data: item, type: 'jsonl' })}>
|
||||
jsonl
|
||||
</MenuItem>
|
||||
)}
|
||||
{item.type === 'abstract' && (
|
||||
<MenuItem onClick={() => handleExportData({ data: item, type: 'txt' })}>
|
||||
txt
|
||||
</MenuItem>
|
||||
)}
|
||||
</MenuList>
|
||||
</Menu> */}
|
||||
|
||||
<Button
|
||||
size={'sm'}
|
||||
colorScheme={'red'}
|
||||
isLoading={isDeleting}
|
||||
onClick={openConfirm(() => handleDelData(item._id))}
|
||||
>
|
||||
删除
|
||||
</Button>
|
||||
</Td>
|
||||
</Tr>
|
||||
))}
|
||||
</Tbody>
|
||||
</Table>
|
||||
</TableContainer>
|
||||
|
||||
{ImportDataId && (
|
||||
<ImportDataModal
|
||||
dataId={ImportDataId}
|
||||
onClose={() => setImportDataId(undefined)}
|
||||
onSuccess={refetch}
|
||||
/>
|
||||
)}
|
||||
{isOpenCreateDataModal && (
|
||||
<CreateDataModal onClose={onCloseCreateDataModal} onSuccess={refetch} />
|
||||
)}
|
||||
<ConfirmChild />
|
||||
</Box>
|
||||
);
|
||||
};
|
||||
|
||||
export default DataList;
|
@@ -13,15 +13,11 @@ import {
|
||||
Textarea
|
||||
} from '@chakra-ui/react';
|
||||
import { useToast } from '@/hooks/useToast';
|
||||
import { customAlphabet } from 'nanoid';
|
||||
import { encode } from 'gpt-token-utils';
|
||||
import { useConfirm } from '@/hooks/useConfirm';
|
||||
import { useMutation } from '@tanstack/react-query';
|
||||
import { postModelDataSplitData, getWebContent } from '@/api/model';
|
||||
import { formatPrice } from '@/utils/user';
|
||||
|
||||
const nanoid = customAlphabet('abcdefghijklmnopqrstuvwxyz1234567890', 12);
|
||||
|
||||
const SelectUrlModal = ({
|
||||
onClose,
|
||||
onSuccess,
|
||||
@@ -106,9 +102,6 @@ const SelectUrlModal = ({
|
||||
根据网站地址,获取网站文本内容(请注意仅能获取静态网站文本,注意看下获取后的内容是否正确)。模型会对文本进行
|
||||
QA 拆分,需要较长训练时间,拆分需要消耗 tokens,账号余额不足时,未拆分的数据会被删除。
|
||||
</Box>
|
||||
<Box mt={2}>
|
||||
一共 {encode(webText).length} 个tokens,大约 {formatPrice(encode(webText).length * 3)}元
|
||||
</Box>
|
||||
<Flex w={'100%'} alignItems={'center'} my={4}>
|
||||
<Box flex={'0 0 70px'}>网站地址</Box>
|
||||
<Input
|
||||
|
@@ -4,7 +4,7 @@ import { httpsAgent } from '@/service/utils/tools';
|
||||
import { getOpenApiKey } from '../utils/openai';
|
||||
import type { ChatCompletionRequestMessage } from 'openai';
|
||||
import { DataItemSchema } from '@/types/mongoSchema';
|
||||
import { ChatModelNameEnum } from '@/constants/model';
|
||||
import { ChatModelEnum } from '@/constants/model';
|
||||
import { pushSplitDataBill } from '@/service/events/pushBill';
|
||||
|
||||
export async function generateAbstract(next = false): Promise<any> {
|
||||
@@ -68,7 +68,7 @@ export async function generateAbstract(next = false): Promise<any> {
|
||||
// 请求 chatgpt 获取摘要
|
||||
const abstractResponse = await chatAPI.createChatCompletion(
|
||||
{
|
||||
model: ChatModelNameEnum.GPT35,
|
||||
model: ChatModelEnum.GPT35,
|
||||
temperature: 0.8,
|
||||
n: 1,
|
||||
messages: [
|
||||
|
@@ -3,7 +3,7 @@ import { getOpenAIApi } from '@/service/utils/auth';
|
||||
import { httpsAgent } from '@/service/utils/tools';
|
||||
import { getOpenApiKey } from '../utils/openai';
|
||||
import type { ChatCompletionRequestMessage } from 'openai';
|
||||
import { ChatModelNameEnum } from '@/constants/model';
|
||||
import { ChatModelEnum } from '@/constants/model';
|
||||
import { pushSplitDataBill } from '@/service/events/pushBill';
|
||||
import { generateVector } from './generateVector';
|
||||
import { openaiError2 } from '../errorCode';
|
||||
@@ -84,7 +84,7 @@ A2:
|
||||
chatAPI
|
||||
.createChatCompletion(
|
||||
{
|
||||
model: ChatModelNameEnum.GPT35,
|
||||
model: ChatModelEnum.GPT35,
|
||||
temperature: 0.8,
|
||||
n: 1,
|
||||
messages: [
|
||||
|
@@ -1,27 +1,34 @@
|
||||
import { connectToDatabase, Bill, User } from '../mongo';
|
||||
import { modelList, ChatModelNameEnum } from '@/constants/model';
|
||||
import { encode } from 'gpt-token-utils';
|
||||
import {
|
||||
modelList,
|
||||
ChatModelEnum,
|
||||
ModelNameEnum,
|
||||
Model2ChatModelMap,
|
||||
embeddingModel
|
||||
} from '@/constants/model';
|
||||
import { BillTypeEnum } from '@/constants/user';
|
||||
import type { DataType } from '@/types/data';
|
||||
import { countChatTokens } from '@/utils/tools';
|
||||
|
||||
export const pushChatBill = async ({
|
||||
isPay,
|
||||
modelName,
|
||||
userId,
|
||||
chatId,
|
||||
text
|
||||
messages
|
||||
}: {
|
||||
isPay: boolean;
|
||||
modelName: string;
|
||||
modelName: `${ModelNameEnum}`;
|
||||
userId: string;
|
||||
chatId?: '' | string;
|
||||
text: string;
|
||||
messages: { role: 'system' | 'user' | 'assistant'; content: string }[];
|
||||
}) => {
|
||||
let billId;
|
||||
let billId = '';
|
||||
|
||||
try {
|
||||
// 计算 token 数量
|
||||
const tokens = Math.floor(encode(text).length * 0.75);
|
||||
const tokens = countChatTokens({ model: Model2ChatModelMap[modelName] as any, messages });
|
||||
const text = messages.map((item) => item.content).join('');
|
||||
|
||||
console.log(
|
||||
`chat generate success. text len: ${text.length}. token len: ${tokens}. pay:${isPay}`
|
||||
@@ -88,7 +95,7 @@ export const pushSplitDataBill = async ({
|
||||
if (isPay) {
|
||||
try {
|
||||
// 获取模型单价格, 都是用 gpt35 拆分
|
||||
const modelItem = modelList.find((item) => item.model === ChatModelNameEnum.GPT35);
|
||||
const modelItem = modelList.find((item) => item.model === ChatModelEnum.GPT35);
|
||||
const unitPrice = modelItem?.price || 3;
|
||||
// 计算价格
|
||||
const price = unitPrice * tokenLen;
|
||||
@@ -97,7 +104,7 @@ export const pushSplitDataBill = async ({
|
||||
const res = await Bill.create({
|
||||
userId,
|
||||
type,
|
||||
modelName: ChatModelNameEnum.GPT35,
|
||||
modelName: ChatModelEnum.GPT35,
|
||||
textLen: text.length,
|
||||
tokenLen,
|
||||
price
|
||||
@@ -149,7 +156,7 @@ export const pushGenerateVectorBill = async ({
|
||||
const res = await Bill.create({
|
||||
userId,
|
||||
type: BillTypeEnum.vector,
|
||||
modelName: ChatModelNameEnum.VECTOR,
|
||||
modelName: embeddingModel,
|
||||
textLen: text.length,
|
||||
tokenLen,
|
||||
price
|
||||
|
@@ -5,7 +5,7 @@ import { getOpenAIApi } from '@/service/utils/auth';
|
||||
import { httpsAgent } from './tools';
|
||||
import { User } from '../models/user';
|
||||
import { formatPrice } from '@/utils/user';
|
||||
import { ChatModelNameEnum } from '@/constants/model';
|
||||
import { embeddingModel } from '@/constants/model';
|
||||
import { pushGenerateVectorBill } from '../events/pushBill';
|
||||
|
||||
/* 获取用户 api 的 openai 信息 */
|
||||
@@ -80,7 +80,7 @@ export const openaiCreateEmbedding = async ({
|
||||
const res = await chatAPI
|
||||
.createEmbedding(
|
||||
{
|
||||
model: ChatModelNameEnum.VECTOR,
|
||||
model: embeddingModel,
|
||||
input: text
|
||||
},
|
||||
{
|
||||
@@ -134,11 +134,11 @@ export const gpt35StreamResponse = ({
|
||||
try {
|
||||
const json = JSON.parse(data);
|
||||
const content: string = json?.choices?.[0].delta.content || '';
|
||||
// console.log('content:', content);
|
||||
if (!content || (responseContent === '' && content === '\n')) return;
|
||||
|
||||
responseContent += content;
|
||||
!stream.destroyed && stream.push(content.replace(/\n/g, '<br/>'));
|
||||
|
||||
if (!stream.destroyed && content) {
|
||||
stream.push(content.replace(/\n/g, '<br/>'));
|
||||
}
|
||||
} catch (error) {
|
||||
error;
|
||||
}
|
||||
|
@@ -2,10 +2,12 @@ import type { NextApiRequest } from 'next';
|
||||
import crypto from 'crypto';
|
||||
import jwt from 'jsonwebtoken';
|
||||
import { ChatItemType } from '@/types/chat';
|
||||
import { encode } from 'gpt-token-utils';
|
||||
import { OpenApi, User } from '../mongo';
|
||||
import { formatPrice } from '@/utils/user';
|
||||
import { ERROR_ENUM } from '../errorCode';
|
||||
import { countChatTokens } from '@/utils/tools';
|
||||
import { ChatCompletionRequestMessageRoleEnum } from 'openai';
|
||||
import { ChatModelEnum } from '@/constants/model';
|
||||
|
||||
/* 密码加密 */
|
||||
export const hashPassword = (psw: string) => {
|
||||
@@ -86,8 +88,16 @@ export const authOpenApiKey = async (req: NextApiRequest) => {
|
||||
export const httpsAgent = (fast: boolean) =>
|
||||
fast ? global.httpsAgentFast : global.httpsAgentNormal;
|
||||
|
||||
/* tokens 截断 */
|
||||
export const openaiChatFilter = (prompts: ChatItemType[], maxTokens: number) => {
|
||||
/* 聊天内容 tokens 截断 */
|
||||
export const openaiChatFilter = ({
|
||||
model,
|
||||
prompts,
|
||||
maxTokens
|
||||
}: {
|
||||
model: `${ChatModelEnum}`;
|
||||
prompts: ChatItemType[];
|
||||
maxTokens: number;
|
||||
}) => {
|
||||
const formatPrompts = prompts.map((item) => ({
|
||||
obj: item.obj,
|
||||
value: item.value
|
||||
@@ -97,41 +107,64 @@ export const openaiChatFilter = (prompts: ChatItemType[], maxTokens: number) =>
|
||||
.trim()
|
||||
}));
|
||||
|
||||
let res: ChatItemType[] = [];
|
||||
|
||||
let chats: ChatItemType[] = [];
|
||||
let systemPrompt: ChatItemType | null = null;
|
||||
|
||||
// System 词保留
|
||||
if (formatPrompts[0]?.obj === 'SYSTEM') {
|
||||
systemPrompt = formatPrompts.shift() as ChatItemType;
|
||||
maxTokens -= encode(formatPrompts[0].value).length;
|
||||
}
|
||||
|
||||
// 从后往前截取
|
||||
// 格式化文本内容成 chatgpt 格式
|
||||
const map = {
|
||||
Human: ChatCompletionRequestMessageRoleEnum.User,
|
||||
AI: ChatCompletionRequestMessageRoleEnum.Assistant,
|
||||
SYSTEM: ChatCompletionRequestMessageRoleEnum.System
|
||||
};
|
||||
|
||||
let messages: { role: ChatCompletionRequestMessageRoleEnum; content: string }[] = [];
|
||||
|
||||
// 从后往前截取对话内容
|
||||
for (let i = formatPrompts.length - 1; i >= 0; i--) {
|
||||
const tokens = encode(formatPrompts[i].value).length;
|
||||
res.unshift(formatPrompts[i]);
|
||||
chats.unshift(formatPrompts[i]);
|
||||
|
||||
messages = (systemPrompt ? [systemPrompt, ...chats] : chats).map((item) => ({
|
||||
role: map[item.obj],
|
||||
content: item.value
|
||||
}));
|
||||
|
||||
const tokens = countChatTokens({
|
||||
model,
|
||||
messages
|
||||
});
|
||||
|
||||
/* 整体 tokens 超出范围 */
|
||||
if (tokens >= maxTokens) {
|
||||
break;
|
||||
}
|
||||
|
||||
maxTokens -= tokens;
|
||||
}
|
||||
|
||||
return systemPrompt ? [systemPrompt, ...res] : res;
|
||||
return messages;
|
||||
};
|
||||
|
||||
/* system 内容截断 */
|
||||
export const systemPromptFilter = (prompts: string[], maxTokens: number) => {
|
||||
export const systemPromptFilter = ({
|
||||
model,
|
||||
prompts,
|
||||
maxTokens
|
||||
}: {
|
||||
model: 'gpt-4' | 'gpt-4-32k' | 'gpt-3.5-turbo';
|
||||
prompts: string[];
|
||||
maxTokens: number;
|
||||
}) => {
|
||||
let splitText = '';
|
||||
|
||||
// 从前往前截取
|
||||
for (let i = 0; i < prompts.length; i++) {
|
||||
const prompt = prompts[i];
|
||||
const prompt = prompts[i].replace(/\n+/g, '\n');
|
||||
|
||||
splitText += `${prompt}\n`;
|
||||
const tokens = encode(splitText).length;
|
||||
const tokens = countChatTokens({ model, messages: [{ role: 'system', content: splitText }] });
|
||||
if (tokens >= maxTokens) {
|
||||
break;
|
||||
}
|
||||
|
9
src/types/mongoSchema.d.ts
vendored
9
src/types/mongoSchema.d.ts
vendored
@@ -2,8 +2,9 @@ import type { ChatItemType } from './chat';
|
||||
import {
|
||||
ModelStatusEnum,
|
||||
TrainingStatusEnum,
|
||||
ChatModelNameEnum,
|
||||
ModelVectorSearchModeEnum
|
||||
ModelNameEnum,
|
||||
ModelVectorSearchModeEnum,
|
||||
ChatModelEnum
|
||||
} from '@/constants/model';
|
||||
import type { DataType } from './data';
|
||||
|
||||
@@ -45,8 +46,8 @@ export interface ModelSchema {
|
||||
};
|
||||
service: {
|
||||
trainId: string; // 训练的模型,训练后就是训练的模型id
|
||||
chatModel: string; // 聊天时用的模型,训练后就是训练的模型
|
||||
modelName: `${ChatModelNameEnum}`; // 底层模型名称,不会变
|
||||
chatModel: `${ChatModelEnum}`; // 聊天时用的模型,训练后就是训练的模型
|
||||
modelName: `${ModelNameEnum}`; // 底层模型名称,不会变
|
||||
};
|
||||
security: {
|
||||
domain: string[];
|
||||
|
@@ -2,6 +2,7 @@ import crypto from 'crypto';
|
||||
import { useToast } from '@/hooks/useToast';
|
||||
import { encoding_for_model, type Tiktoken } from '@dqbd/tiktoken';
|
||||
import Graphemer from 'graphemer';
|
||||
import { ChatModelEnum } from '@/constants/model';
|
||||
|
||||
const textDecoder = new TextDecoder();
|
||||
const graphemer = new Graphemer();
|
||||
@@ -124,7 +125,7 @@ export const countChatTokens = ({
|
||||
model = 'gpt-3.5-turbo',
|
||||
messages
|
||||
}: {
|
||||
model?: 'gpt-4' | 'gpt-4-32k' | 'gpt-3.5-turbo';
|
||||
model?: `${ChatModelEnum}`;
|
||||
messages: { role: 'system' | 'user' | 'assistant'; content: string }[];
|
||||
}) => {
|
||||
const text = getChatGPTEncodingText(messages, model);
|
||||
|
Reference in New Issue
Block a user