Ollama接入文档 (#4294)

* Add files via upload

* Add files via upload

* Update ollama.md

* Update ollama.md

* Add files via upload
This commit is contained in:
dreamer6680
2025-03-24 15:05:56 +08:00
committed by GitHub
parent 6dcdd540b9
commit 1c4e0c66d5
13 changed files with 184 additions and 0 deletions

View File

@@ -0,0 +1,184 @@
---
title: '使用 Ollama 接入本地模型 '
description: ' 采用 Ollama 部署自己的模型'
icon: 'api'
draft: false
toc: true
weight: 950
---
[Ollama](https://ollama.com/)是一个开源的AI大模型部署工具专注于简化大语言模型的部署和使用支持一键下载和运行各种大模型。
## 安装 Ollama
Ollama 本身支持多种安装方式,但是推荐使用 Docker 拉取镜像部署。如果是个人设备上安装了 Ollama 后续需要解决如何让 Docker 中 FastGPT 容器访问宿主机 Ollama的问题较为麻烦。
### Docker 安装(推荐)
你可以使用 Ollama 官方的 Docker 镜像来一键安装和启动 Ollama 服务(确保你的机器上已经安装了 Docker命令如下
```bash
docker pull ollama/ollama
docker run --rm -d --name ollama -p 11434:11434 ollama/ollama
```
如果你的 FastGPT 是在 Docker 中进行部署的,建议在拉取 Ollama 镜像时保证和 FastGPT 镜像处于同一网络,否则可能出现 FastGPT 无法访问的问题,命令如下:
```bash
docker run --rm -d --name ollama --network (你的 Fastgpt 容器所在网络) -p 11434:11434 ollama/ollama
```
### 主机安装
如果你不想使用 Docker ,也可以采用主机安装,以下是主机安装的一些方式。
#### MacOS
如果你使用的是 macOS且系统中已经安装了 Homebrew 包管理器,可通过以下命令来安装 Ollama
```bash
brew install ollama
ollama serve #安装完成后,使用该命令启动服务
```
#### Linux
在 Linux 系统上,你可以借助包管理器来安装 Ollama。以 Ubuntu 为例,在终端执行以下命令:
```bash
curl https://ollama.com/install.sh | sh #此命令会从官方网站下载并执行安装脚本。
ollama serve #安装完成后,同样启动服务
```
#### Windows
在 Windows 系统中,你可以从 Ollama 官方网站 下载 Windows 版本的安装程序。下载完成后,运行安装程序,按照安装向导的提示完成安装。安装完成后,在命令提示符或 PowerShell 中启动服务:
```bash
ollama serve #安装完成并启动服务后,你可以在浏览器中访问 http://localhost:11434 来验证 Ollama 是否安装成功。
```
#### 补充说明
如果你是采用的主机应用 Ollama 而不是镜像,需要确保你的 Ollama 可以监听0.0.0.0。
##### 1. Linxu 系统
如果 Ollama 作为 systemd 服务运行,打开终端,编辑 Ollama 的 systemd 服务文件使用命令sudo systemctl edit ollama.service在[Service]部分添加Environment="OLLAMA_HOST=0.0.0.0"。保存并退出编辑器然后执行sudo systemctl daemon - reload和sudo systemctl restart ollama使配置生效。
##### 2. MacOS 系统
打开终端使用launchctl setenv ollama_host "0.0.0.0"命令设置环境变量,然后重启 Ollama 应用程序以使更改生效。
##### 3. Windows 系统
通过 “开始” 菜单或搜索栏打开 “编辑系统环境变量”,在 “系统属性” 窗口中点击 “环境变量”,在 “系统变量” 部分点击 “新建”创建一个名为OLLAMA_HOST的变量变量值设置为0.0.0.0,点击 “确定” 保存更改,最后从 “开始” 菜单重启 Ollama 应用程序。
### Ollama 拉取模型镜像
在安装后 Ollama 后,本地是没有模型镜像的,需要自己去拉取 Ollama 中的模型镜像。命令如下:
```bash
# Docker 部署需要先进容器,命令为: docker exec -it < Ollama 容器名 > /bin/sh
ollama pull <模型名>
```
![](/imgs/Ollama-pull.png)
### 测试通信
在安装完成后,需要进行检测测试,首先进入 FastGPT 所在的容器,尝试访问自己的 Ollama ,命令如下:
```bash
docker exec -it < FastGPT 所在的容器名 > /bin/sh
curl http://XXX.XXX.XXX.XXX:11434 #容器部署地址为“http://<容器名>:<端口>”,主机安装地址为"http://<主机IP>:<端口>"主机IP不可为localhost
```
看到访问显示自己的 Ollama 服务以及启动,说明可以正常通信。
## 将 Ollama 接入 FastGPT
### 1. 查看 Ollama 所拥有的模型
首先采用下述命令查看 Ollama 中所拥有的模型,
```bash
# Docker 部署 Ollama需要此命令 docker exec -it < Ollama 容器名 > /bin/sh
ollama ls
```
![](/imgs/Ollama-models1.png)
### 2. AI Proxy 接入
如果你采用的是 FastGPT 中的默认配置文件部署[这里](/docs/development/docker.md),即默认采用 AI Proxy 进行启动。
![](/imgs/Ollama-aiproxy1.png)
以及在确保你的 FastGPT 可以直接访问 Ollama 容器的情况下,无法访问,参考上文[点此跳转](#安装-ollama)的安装过程检测是不是主机不能监测0.0.0.0,或者容器不在同一个网络。
![](/imgs/Ollama-aiproxy2.png)
在 FastGPT 中点击账号->模型提供商->模型配置->新增模型添加自己的模型即可添加模型时需要保证模型ID和 OneAPI 中的模型名称一致。详细参考[这里](/docs/development/modelConfig/intro.md)
![](/imgs/Ollama-models2.png)
![](/imgs/Ollama-models3.png)
运行 FastGPT ,在页面中选择账号->模型提供商->模型渠道->新增渠道。之后,在渠道选择中选择 Ollama ,然后加入自己拉取的模型,填入代理地址,如果是容器中安装 Ollama 代理地址为http://地址:端口补充容器部署地址为“http://<容器名>:<端口>”,主机安装地址为"http://<主机IP>:<端口>"主机IP不可为localhost
![](/imgs/Ollama-aiproxy3.png)
在工作台中创建一个应用,选择自己之前添加的模型,此处模型名称为自己当时设置的别名。注:同一个模型无法多次添加,系统会采取最新添加时设置的别名。
![](/imgs/Ollama-models4.png)
### 3. OneAPI 接入
如果你想使用 OneAPI ,首先需要拉取 OneAPI 镜像,然后将其在 FastGPT 容器的网络中运行。具体命令如下:
```bash
# 拉取 oneAPI 镜像
docker pull intel/oneapi-hpckit
# 运行容器并指定自定义网络和容器名
docker run -it --network < FastGPT 网络 > --name 容器名 intel/oneapi-hpckit /bin/bash
```
进入 OneAPI 页面,添加新的渠道,类型选择 Ollama ,在模型中填入自己 Ollama 中的模型,需要保证添加的模型名称和 Ollama 中一致,再在下方填入自己的 Ollama 代理地址默认http://地址:端口,不需要填写/v1。添加成功后在 OneAPI 进行渠道测试,测试成功则说明添加成功。此处演示采用的是 Docker 部署 Ollama 的效果,主机 Ollama需要修改代理地址为http://<主机IP>:<端口>
![](/imgs/Ollama-oneapi1.png)
渠道添加成功后,点击令牌,点击添加令牌,填写名称,修改配置。
![](/imgs/Ollama-oneapi2.png)
修改部署 FastGPT 的 docker-compose.yml 文件,在其中将 AI Proxy 的使用注释,在 OPENAI_BASE_URL 中加入自己的 OneAPI 开放地址默认是http://地址:端口/v1v1必须填写。KEY 中填写自己在 OneAPI 的令牌。
![](/imgs/Ollama-oneapi3.png)
[直接跳转5](#5-模型添加和使用)添加模型,并使用。
### 4. 直接接入
如果你既不想使用 AI Proxy也不想使用 OneAPI也可以选择直接接入修改部署 FastGPT 的 docker-compose.yml 文件,在其中将 AI Proxy 的使用注释,采用和 OneAPI 的类似配置。注释掉 AIProxy 相关代码在OPENAI_BASE_URL中加入自己的 Ollama 开放地址默认是http://地址:端口/v1强调:v1必须填写。在KEY中随便填入因为 Ollama 默认没有鉴权,如果开启鉴权,请自行填写。其他操作和在 OneAPI 中加入 Ollama 一致,只需在 FastGPT 中加入自己的模型即可使用。此处演示采用的是 Docker 部署 Ollama 的效果,主机 Ollama需要修改代理地址为http://<主机IP>:<端口>
![](/imgs/Ollama-direct1.png)
完成后[点击这里](#5-模型添加和使用)进行模型添加并使用。
### 5. 模型添加和使用
在 FastGPT 中点击账号->模型提供商->模型配置->新增模型添加自己的模型即可添加模型时需要保证模型ID和 OneAPI 中的模型名称一致。
![](/imgs/Ollama-models2.png)
![](/imgs/Ollama-models3.png)
在工作台中创建一个应用,选择自己之前添加的模型,此处模型名称为自己当时设置的别名。注:同一个模型无法多次添加,系统会采取最新添加时设置的别名。
![](/imgs/Ollama-models4.png)
### 6. 补充
上述接入 Ollama 的代理地址中,主机安装 Ollama 的地址为“http://<主机IP>:<端口>”,容器部署 Ollama 地址为“http://<容器名>:<端口>