4.6.7 first pr (#726)

This commit is contained in:
Archer
2024-01-10 23:35:04 +08:00
committed by GitHub
parent 414b693303
commit 006ad17c6a
186 changed files with 2996 additions and 1838 deletions

View File

@@ -0,0 +1,18 @@
import { initSystemConfig } from '@/pages/api/common/system/getInitData';
import { generateQA } from '@/service/events/generateQA';
import { generateVector } from '@/service/events/generateVector';
import { setCron } from '@fastgpt/service/common/system/cron';
export const setUpdateSystemConfigCron = () => {
setCron('*/5 * * * *', () => {
initSystemConfig();
console.log('refresh system config');
});
};
export const setTrainingQueueCron = () => {
setCron('*/3 * * * *', () => {
generateVector();
generateQA();
});
};

View File

@@ -27,7 +27,7 @@ export function reRankRecall({ query, inputs }: PostReRankProps) {
return data;
})
.catch((err) => {
console.log(err);
console.log('rerank error:', err);
return [];
});

View File

@@ -14,7 +14,8 @@ import {
DatasetDataIndexTypeEnum,
DatasetSearchModeEnum,
DatasetSearchModeMap,
SearchScoreTypeEnum
SearchScoreTypeEnum,
TrainingModeEnum
} from '@fastgpt/global/core/dataset/constant';
import { getDefaultIndex } from '@fastgpt/global/core/dataset/utils';
import { jiebaSplit } from '@/service/common/string/jieba';
@@ -27,7 +28,173 @@ import {
} from '@fastgpt/global/core/dataset/type';
import { reRankRecall } from '../../ai/rerank';
import { countPromptTokens } from '@fastgpt/global/common/string/tiktoken';
import { hashStr } from '@fastgpt/global/common/string/tools';
import { hashStr, simpleText } from '@fastgpt/global/common/string/tools';
import type { PushDatasetDataProps } from '@/global/core/dataset/api.d';
import type { PushDataResponse } from '@/global/core/api/datasetRes';
import { PushDatasetDataChunkProps } from '@fastgpt/global/core/dataset/api';
import { MongoDatasetTraining } from '@fastgpt/service/core/dataset/training/schema';
import { startQueue } from '@/service/utils/tools';
import { getCollectionWithDataset } from '@fastgpt/service/core/dataset/controller';
import { getQAModel, getVectorModel } from '../../ai/model';
import { delay } from '@fastgpt/global/common/system/utils';
export async function pushDataToDatasetCollection({
teamId,
tmbId,
collectionId,
data,
prompt,
billId,
trainingMode
}: {
teamId: string;
tmbId: string;
} & PushDatasetDataProps): Promise<PushDataResponse> {
const checkModelValid = async ({ collectionId }: { collectionId: string }) => {
const {
datasetId: { _id: datasetId, vectorModel, agentModel }
} = await getCollectionWithDataset(collectionId);
if (trainingMode === TrainingModeEnum.chunk) {
if (!collectionId) return Promise.reject(`CollectionId is empty`);
const vectorModelData = getVectorModel(vectorModel);
if (!vectorModelData) {
return Promise.reject(`Model ${vectorModel} is inValid`);
}
return {
datasetId,
maxToken: vectorModelData.maxToken * 1.5,
model: vectorModelData.model,
weight: vectorModelData.weight
};
}
if (trainingMode === TrainingModeEnum.qa) {
const qaModelData = getQAModel(agentModel);
if (!qaModelData) {
return Promise.reject(`Model ${agentModel} is inValid`);
}
return {
datasetId,
maxToken: qaModelData.maxContext * 0.8,
model: qaModelData.model,
weight: 0
};
}
return Promise.reject(`Mode ${trainingMode} is inValid`);
};
const { datasetId, model, maxToken, weight } = await checkModelValid({
collectionId
});
// format q and a, remove empty char
data.forEach((item) => {
item.q = simpleText(item.q);
item.a = simpleText(item.a);
item.indexes = item.indexes
?.map((index) => {
return {
...index,
text: simpleText(index.text)
};
})
.filter(Boolean);
});
// filter repeat or equal content
const set = new Set();
const filterResult: Record<string, PushDatasetDataChunkProps[]> = {
success: [],
overToken: [],
repeat: [],
error: []
};
data.forEach((item) => {
if (!item.q) {
filterResult.error.push(item);
return;
}
const text = item.q + item.a;
// count q token
const token = countPromptTokens(item.q);
if (token > maxToken) {
filterResult.overToken.push(item);
return;
}
if (set.has(text)) {
console.log('repeat', item);
filterResult.repeat.push(item);
} else {
filterResult.success.push(item);
set.add(text);
}
});
// 插入记录
const insertData = async (dataList: PushDatasetDataChunkProps[], retry = 3): Promise<number> => {
try {
const results = await MongoDatasetTraining.insertMany(
dataList.map((item, i) => ({
teamId,
tmbId,
datasetId,
collectionId,
billId,
mode: trainingMode,
prompt,
model,
q: item.q,
a: item.a,
chunkIndex: item.chunkIndex ?? i,
weight: weight ?? 0,
indexes: item.indexes
}))
);
await delay(500);
return results.length;
} catch (error) {
if (retry > 0) {
await delay(1000);
return insertData(dataList, retry - 1);
}
return Promise.reject(error);
}
};
let insertLen = 0;
const chunkSize = 50;
const chunkList = filterResult.success.reduce(
(acc, cur) => {
const lastChunk = acc[acc.length - 1];
if (lastChunk.length < chunkSize) {
lastChunk.push(cur);
} else {
acc.push([cur]);
}
return acc;
},
[[]] as PushDatasetDataChunkProps[][]
);
for await (const chunks of chunkList) {
insertLen += await insertData(chunks);
}
startQueue();
delete filterResult.success;
return {
insertLen,
...filterResult
};
}
/* insert data.
* 1. create data id
@@ -439,7 +606,9 @@ export async function searchDatasetData(props: {
}))
});
if (!Array.isArray(results)) return [];
if (!Array.isArray(results)) {
return [];
}
// add new score to data
const mergeResult = results
@@ -457,7 +626,6 @@ export async function searchDatasetData(props: {
return mergeResult;
} catch (error) {
usingReRank = false;
return [];
}
};

View File

@@ -8,20 +8,15 @@ import { addLog } from '@fastgpt/service/common/system/log';
import { splitText2Chunks } from '@fastgpt/global/common/string/textSplitter';
import { replaceVariable } from '@fastgpt/global/common/string/tools';
import { Prompt_AgentQA } from '@/global/core/prompt/agent';
import { pushDataToDatasetCollection } from '@/pages/api/core/dataset/data/pushData';
import { getErrText } from '@fastgpt/global/common/error/utils';
import { authTeamBalance } from '../support/permission/auth/bill';
import type { PushDatasetDataChunkProps } from '@fastgpt/global/core/dataset/api.d';
import { UserErrEnum } from '@fastgpt/global/common/error/code/user';
import { lockTrainingDataByTeamId } from '@fastgpt/service/core/dataset/training/controller';
import { pushDataToDatasetCollection } from '@/service/core/dataset/data/controller';
const reduceQueue = (retry = false) => {
const reduceQueue = () => {
global.qaQueueLen = global.qaQueueLen > 0 ? global.qaQueueLen - 1 : 0;
if (global.qaQueueLen === 0 && retry) {
setTimeout(() => {
generateQA();
}, 60000);
}
return global.vectorQueueLen === 0;
};
@@ -144,11 +139,11 @@ ${replaceVariable(Prompt_AgentQA.fixedText, { text })}`;
teamId: data.teamId,
tmbId: data.tmbId,
collectionId: data.collectionId,
trainingMode: TrainingModeEnum.chunk,
data: qaArr.map((item) => ({
...item,
chunkIndex: data.chunkIndex
})),
mode: TrainingModeEnum.chunk,
billId: data.billId
});
@@ -178,7 +173,7 @@ ${replaceVariable(Prompt_AgentQA.fixedText, { text })}`;
reduceQueue();
generateQA();
} catch (err: any) {
reduceQueue(true);
reduceQueue();
// log
if (err?.response) {
addLog.info('openai error: 生成QA错误', {

View File

@@ -9,15 +9,9 @@ import { pushGenerateVectorBill } from '@/service/support/wallet/bill/push';
import { UserErrEnum } from '@fastgpt/global/common/error/code/user';
import { lockTrainingDataByTeamId } from '@fastgpt/service/core/dataset/training/controller';
const reduceQueue = (retry = false) => {
const reduceQueue = () => {
global.vectorQueueLen = global.vectorQueueLen > 0 ? global.vectorQueueLen - 1 : 0;
if (global.vectorQueueLen === 0 && retry) {
setTimeout(() => {
generateVector();
}, 60000);
}
return global.vectorQueueLen === 0;
};
@@ -159,7 +153,7 @@ export async function generateVector(): Promise<any> {
console.log(`embedding finished, time: ${Date.now() - start}ms`);
} catch (err: any) {
reduceQueue(true);
reduceQueue();
// log
if (err?.response) {
addLog.info('openai error: 生成向量错误', {

View File

@@ -214,7 +214,7 @@ export const dispatchChatCompletion = async (props: ChatProps): Promise<ChatResp
model: modelName,
inputTokens,
outputTokens,
query: userChatInput,
query: `${userChatInput}`,
maxToken: max_tokens,
quoteList: filterQuoteQA,
historyPreview: getHistoryPreview(completeMessages),
@@ -407,7 +407,7 @@ async function streamResponse({
}
if (!answer) {
return Promise.reject('Chat API is error or undefined');
return Promise.reject('core.chat API is error or undefined');
}
return { answer };

View File

@@ -58,7 +58,7 @@ export async function dispatchDatasetSearch(
usingSimilarityFilter,
usingReRank: searchUsingReRank
} = await searchDatasetData({
rawQuery: userChatInput,
rawQuery: `${userChatInput}`,
queries: concatQueries,
model: vectorModel.model,
similarity,

View File

@@ -61,7 +61,7 @@ A: ${systemPrompt}
{
role: 'user',
content: replaceVariable(defaultPrompt, {
query: userChatInput,
query: `${userChatInput}`,
histories: concatFewShot
})
}

View File

@@ -6,6 +6,8 @@ import { hashStr } from '@fastgpt/global/common/string/tools';
import { createDefaultTeam } from '@fastgpt/service/support/user/team/controller';
import { exit } from 'process';
import { initVectorStore } from '@fastgpt/service/common/vectorStore/controller';
import { getInitConfig } from '@/pages/api/common/system/getInitData';
import { setUpdateSystemConfigCron, setTrainingQueueCron } from './common/system/cron';
/**
* connect MongoDB and init data
@@ -13,11 +15,18 @@ import { initVectorStore } from '@fastgpt/service/common/vectorStore/controller'
export function connectToDatabase(): Promise<void> {
return connectMongo({
beforeHook: () => {},
afterHook: () => {
afterHook: async () => {
initVectorStore();
// start queue
startQueue();
return initRootUser();
// init system config
getInitConfig();
// cron
setUpdateSystemConfigCron();
setTrainingQueueCron();
initRootUser();
}
});
}

View File

@@ -60,7 +60,6 @@ export async function saveChat({
}))
)
];
console.log(metadataUpdate);
const title =
chatContentReplaceBlock(content[0].value).slice(0, 20) ||

View File

@@ -2,20 +2,9 @@ import { generateQA } from '../events/generateQA';
import { generateVector } from '../events/generateVector';
/* start task */
export const startQueue = (limit?: number) => {
export const startQueue = () => {
if (!global.systemEnv) return;
if (limit) {
for (let i = 0; i < limit; i++) {
generateVector();
generateQA();
}
return;
}
for (let i = 0; i < global.systemEnv.qaMaxProcess; i++) {
generateQA();
}
for (let i = 0; i < global.systemEnv.vectorMaxProcess; i++) {
generateVector();
}
generateQA();
generateVector();
};